• Title/Summary/Keyword: Beef Production

Search Result 616, Processing Time 0.036 seconds

Marbling and Its Nutritional Impact on Risk Factors for Cardiovascular Disease

  • Smith, Stephen B.
    • Food Science of Animal Resources
    • /
    • v.36 no.4
    • /
    • pp.435-444
    • /
    • 2016
  • This review addresses the role of fat in beef palatability and healthfulness. Particular emphasis is placed on the content of oleic acid in beef, and how this increases with time when cattle are fed a grain-based diet. Oleic acid decreases the melting point of lipids from beef, increasing the perception of juiciness and improving beef flavor. Clinical trials have demonstrated that ground beef containing elevated oleic acid increases, or at the least has no negative effects on the concentration of HDL cholesterol. The amount of fat in published ground beef intervention trials greatly exceeds the amount of fat in equivalent portions of beef from U.S. domestic or Korean Hanwoo cattle. Thus, we conclude 1) Beef cattle should be raised under production conditions that increase the concentration of oleic acid in their edible tissues (i.e., by grain feeding over extended periods of time); and 2) The amount of fat consumed in a typical portion of beef will not increase risk factors for cardiovascular disease.

Effect of bamboo grass (Tiliacora triandra, Diels) pellet supplementation on rumen fermentation characteristics and methane production in Thai native beef cattle

  • Wann, Chinda;Wanapat, Metha;Mapato, Chaowarit;Ampapon, Thiwakorn;Huang, Bi-zhi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1153-1160
    • /
    • 2019
  • Objective: The objective of this study was to investigate the effect of bamboo grass (Tiliacora triandra, Diels) pellet (Bamboo-Cass) supplementation on feed intake, nutrient digestibility, rumen microbial population and methane production in Thai native beef cattle. Methods: Four Thai native beef cattle bulls ($190{\pm}2kg$) were randomly allotted to four respective dietary treatments in a $4{\times}4$ Latin square design. Treatments were the varying levels of Bamboo-Cass supplementation at 0, 50, 100, and 150 g/head/d, respectively. Rice straw was fed ad libitum and the concentrate offered at 0.5% of body weight. Results: Under this experiment, the findings revealed that acetate and butyrate production were decreased (p<0.05), propionate increased (p<0.05), whilst ruminal $NH_3-N$ concentration was decreased (p<0.05) by supplementation of Bamboo-Cass at 150 g/head/d. Moreover, rice straw intake, and microbial population were linearly increased (p<0.05), while methane production was decreased (p<0.05). Conclusion: The results from the present study indicate that supplementation of Bamboo-Cass at 150 g/head/d significantly enhanced feed intake, decreased protozoa and increased bacterial population, rumen fermentation efficiency while decreased methane production. Therefore, Bamboo-Cass as a supplement is promising as a rumen enhancer in beef cattle fed on rice straw.

Associations between gene polymorphisms and selected meat traits in cattle - A review

  • Zalewska, Magdalena;Puppel, Kamila;Sakowski, Tomasz
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1425-1438
    • /
    • 2021
  • Maintaining a high level of beef consumption requires paying attention not only to quantitative traits but also to the quality and dietary properties of meat. Growing consumer demands do not leave producers many options for how animals are selected for breeding and animal keeping. Meat and carcass fatness quality traits, which are influenced by multiple genes, are economically important in beef cattle breeding programs. The recent availability of genome sequencing methods and many previously identified molecular markers offer new opportunities for animal breeding, including the use of molecular information in selection programs. Many gene polymorphisms have thus far been analyzed and evaluated as potential candidates for molecular markers of meat quality traits. Knowledge of these markers can be further applied to breeding programs through marker-assisted selection. In this literature review, we discuss the most promising and well-described candidates and their associations with selected beef production traits.

Performance, Carcass Quality and Fatty Acid Profile of Crossbred Wagyu Beef Steers Receiving Palm and/or Linseed Oil

  • Suksombat, Wisitiporn;Meeprom, Chayapol;Mirattanaphrai, Rattakorn
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1432-1442
    • /
    • 2016
  • The objective of this study was to determine the effect of palm and/or linseed oil (LSO) supplementation on carcass quality, sensory evaluation and fatty acid profile of beef from crossbred Wagyu beef steers. Twenty four fattening Wagyu crossbred beef steers (50% Wagyu), averaging $640{\pm}18kg$ live weight (LW) and approximately 30 mo old, were stratified and randomly assigned in completely randomized design into 3 treatment groups. All steers were fed approximately 7 kg/d of 14% crude protein concentrate with ad libitum rice straw and had free access to clean water and were individually housed in a free-stall unit. The treatments were i) control concentrate plus 200 g/d of palm oil; ii) control concentrate plus 100 g/d of palm oil and 100 g/d of LSO, iii) control concentrate plus 200 g/d of LSO. This present study demonstrated that supplementation of LSO rich in C18:3n-3 did not influence feed intakes, LW changes, carcass and muscle characteristics, sensory and physical properties. LSO increased C18:3n-3, C22:6n-3, and n-3 polyunsaturated fatty acids (PUFA), however, it decreased C18:1t-11, C18:2n-6, cis-9, trans-11, and trans-10,cis-12 conjugated linoleic acids, n-6 PUFA and n-6:n-3 ratio in Longissimus dorsi and Semimembranosus muscles.

Potential use of Flemingia (Flemingia macrophylla) as a protein source fodder to improve nutrients digestibility, ruminal fermentation efficiency in beef cattle

  • Phesatcha, Burarat;Viennasay, Bounnaxay;Wanapat, Metha
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.613-620
    • /
    • 2021
  • Objective: This study aimed at studying the potential use of Flemingia (Flemingia macrophylla) as a protein source fodder to improve nutrients digestibility and ruminal fermentation efficiency in beef cattle. Methods: Four, Thai native beef cattle were randomly assigned in a 4×4 Latin square design. Four levels of Flemingia hay meal (FHM) were used to replace soybean meal (SBM) in the concentrate mixtures in four dietary treatments replacing levels at 0%, 30%, 60%, and 100% of SBM. Results: The experimental findings revealed that replacements did not effect on intake of rice straw, concentrate and total dry matter (DM) intake (p>0.05). However, the apparent digestibilities of DM, organic matter, crude protein, acid detergent fiber, and neutral detergent fiber were linearly increased up to 100% replacement levels. Moreover, the production of total volatile fatty acids, and propionate concentration were enhanced (p<0.05) whereas the concentration of acetate was reduced in all replacement groups. Consequently, the CH4 production was significantly lower when increasing levels of FHM for SBM (p<0.05). Furthermore, rumen bacterial population was additionally increased (p<0.05) while protozoal population was clearly decreased (p<0.05) in all replacement groups up to 100%. In addition, microbial nitrogen supply and efficiency of microbial nitrogen synthesis were enhanced (p<0.05), as affected by FHM replacements. Conclusion: The findings under this experiment suggest that 100% FHM replacement in concentrate mixture enhanced rumen fermentation efficiency, nutrients digestibilities, bacterial population, microbial protein synthesis, and subsequently reduced CH4 production in beef cattle fed on rice straw.

Recent advances in feed and nutrition of beef cattle in China - A review

  • Qian Gao;Hu Liu;Zuo Wang;Xinyi Lan;Jishan An;Weijun Shen;Fachun Wan
    • Animal Bioscience
    • /
    • v.36 no.4
    • /
    • pp.529-539
    • /
    • 2023
  • The beef cattle industry in China has advanced remarkably since its reform and opening up; consequently, China has become the world's third-largest beef cattle producer. China is also one of the countries with the most substantial research input and output in the field of beef cattle feed and nutrition. The progress and innovation by China in the research field of beef cattle feed and nutrition have undoubtedly promoted the development of the domestic beef cattle industry. This review summarizes recent advances in feed resource development, nutrient requirements, and nutritional regulation of beef cattle in China. Limitations in current research and perspectives on future work are also discussed.

Manipulation of the Rumen Ecosystem to Support High-Performance Beef Cattle - Review -

  • Jouany, J.P.;Michalet-Doreau, B.;Doreau, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.1
    • /
    • pp.96-114
    • /
    • 2000
  • Genetically selected beef cattle are fed high-energy diets in intensive production systems developed in industrial countries. This type of feeding can induce rumen dysfunctions that have to be corrected by farmers to optimise cost-effectiveness. The risk of rumen acidosis can be reduced by using slowly degradable starch, which partly escapes rumen fermentation and goes on to be digested in the small intestine. Additives are proposed to stabilise the rumen pH and restrict lactate accumulation, thus favouring the growth of cellulolytic bacteria and stimulating the digestion of the dietary plant cell wall fraction. This enhances the energy value of feeds when animals are fed maize silage for example. Supplementation of lipids to increase energy intake is known to influence the population of rumen protozoa and some associated rumen functions such as cellulolysis and proteolysis. The end products of rumen fermentation are also changed. Lipolysis and hydrogenation by rumen microbes alter the form of fatty acids supplied to animals. This effect is discussed in relation with the quality of lipids in beef and the implications for human health. Conditions for optimising the amount of amino acids from microbial proteins and dietary by-pass proteins flowing to the duodenum of ruminants, and their impact on beef production, are also examined.

Production of Viable Lactobacillus crispatus by Using Whey Based Medium (Lactobacillus crispatus 생균 생산을 위한 whey 배지 최적화)

  • Chang, Chung-Eun;Koo, Ja-Ryong;So, Jae-Seong;Yun, Hyun-Shik
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.529-532
    • /
    • 2011
  • Whey based medium was optimized for the production of viable Lactobacillus crispatus KLB 46 isolated from the vagina of Korean women. Among the various nitrogen sources such as yeast extract, beef extract, and proteose peptone no. 3 supplemented to whey, beef extract showed the highest viable cell production. The addition of Tween 80 to the whey based medium increased viable cell concentration. As beef extract supplementation is not economically attractive, corn steep liquor was added as a supplementary nitrogen sources. When corn steep liquor was supplied with beef extract with the ratio 5 : 1, the viable cell count was $3.11{\times}10^9$ CFU/mL. Also, the addition of mineral salts containing sodium acetate (5 g/L), potassium phosphate dibasic (2 g/L), magnesium sulfate (0.1 g/L) and manganese sulfate (0.05 g/L) to the whey medium increased viable cell count further ($5.00{\times}10^9$ CFU/mL).

A case study of CO2 emissions from beef and pork production in South Korea

  • Dawoon Jeong;Young Soon Kim;Soohyun Cho;Inho Hwang
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.427-440
    • /
    • 2023
  • The current study evaluated carbon dioxide (CO2) emissions from beef and pork production and distribution chains in the South Korean meat industry. Data from industrial example farms and slaughterhouses were assessed on the basis of both the guidelines from the United Kingdom's Publicly Available Specification (PAS) 2050:2011 and the Korea Environmental Industry & Technology Institute carbon footprint calculation. The main factors for our estimations were animal feeds, manure waste, transportation, energy and water, refrigerants, and package data. Our analyses show that 16.55 kg CO2 equivalent (eq) was emitted during the production of 1 kg of live cattle. When retail yields and packing processes were considered, the CO2-eq of 1 kg of packaged Hanwoo beef was 27.86 kg. As for pigs, emissions from 1 kg of live pigs and packaged pork meat were 2.62 and 12.75 kg CO2-eq, respectively. While we gathered data from only two farms and slaughterhouses and our findings can therefore not be extrapolated to all meats produced in the South Korean meat industry, they indicate that manure waste is the greatest factor affecting ultimate CO2 emissions of packaged meats.

An Empirical Analysis on the Effectiveness of the Korean Beef Cow Fattening Support Program (한우 암소비육지원사업 효과 실증분석)

  • Ji, Seonu;Kang, Byung-Kyu;Lee, Hyung-Woo
    • Korean Journal of Organic Agriculture
    • /
    • v.31 no.4
    • /
    • pp.327-341
    • /
    • 2023
  • The Ministry of Agriculture, Food and Rural Affairs, Hanwoo Association and Nonghyup have discussed proactive reduction measures for cows in response to concerns about an oversupply of hanwoo to ensure supply stability. This study aims to empirically analyze whether the cow fattening support program is being implemented in line with its objectives. Based on the analysis of beef traceability data, the slaughter age of participating cows was reduced by 7.6 to 14.7 months compared to non-participating cows. And heifer was reduced 1.5 months in their slaughter age. In case of parity, participating cows showed a reduction of 1.4 compared to non-participating cows. Through the SUR model, an analysis was conducted to examine the effect of the cow fattening support program on the suppression of calf production numbers. The analysis results showed that the calf production numbers are positively influenced by the number of fertile cow and the quantity of semen sales. Furthermore, it is estimated that calf production decreased as the fat index increased, and during the period when the cow fattening support program was implemented, an average monthly suppression of 3,558 calves was observed.