• Title/Summary/Keyword: Bed Sediment Transport

Search Result 136, Processing Time 0.033 seconds

Development of Hybrid Three Dimensional Beach Deformation Model and Its Application (복합 3차원 해빈변형모델의 구축과 그 적용)

  • Shin Seung-Ho;Hong Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.199-206
    • /
    • 2004
  • Construction of a large offshore structure in coastal area may cause serious morphological changes for a wide region ranging from shoreline to offshore behind the structure. Shin et at. [2000] and Shin and Hong [2004] identified the sediment transport patterns behind the large offshore structure through a series of three dimensional movable bed experiments. In present study, a hybrid three dimensional beach deformation model was suggested based on those sediment transport mechanisms revealed by experimental results of the preceding studies. The model was verified by the results of the three dimensional moveable bed experiments and they agreed well not only in reappeared tombolo in shoreline side but also in the erosion and deposition region behind offshore structure. In addition, the model was applied to real beach deformation problem, which was occurred by construction of artificial offshore islands, and it validates the applicability of the model.

  • PDF

2D Finite Element Modeling of Bed Elevation Change in a Curved Channel (유한요소법을 이용한 만곡수로에서의 2차원 하상변동 수치모형)

  • Kim Tae Beom;Choi Sung-Uk;Min Kyung Duck
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.414-418
    • /
    • 2005
  • A finite element model is developed for the numerical simulation of bed elevation change in a curved channel. The SU/PG (Streamline-Upwind/Petrov-Galerkin) method is used to solve 2D shallow water equations and the BG (Bubnov-Galerkin) method is used for the Exner equation. For the time derivative terms, the Crank-Nicolson scheme is used. The developed model is a decoupled model in a sense that the bed elevation does not change simultaneously with the flow during the computational time step. The total load formula with is used for the sediment transport model. The slip conditions are described along the lateral boundaries. The effects of gravity force due to geometry change and the secondary flows in a curved channel are considered in the model. For the verification, the model is applied to two laboratory experiments. The first is $140^{\circ}$ bended channel data at Delft Hydraulics Laboratory and the second is $140^{\circ}$ bended channel data at Laboratory of Fluid Mechanics of the Delft University of Technology. The finite element grid is constructed with linear quadrilateral elements. It is found that the computed results are in good agreement with measured data, showing a point bar at the inner bank and a pool at the outer bank.

  • PDF

Prediction of River Bed Variation using Numerical Model (수치모형을 이용한 하상변동 예측)

  • An, Sang-Jin;Yoon, Seok-Hwan;Beack, Nam-Dae
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.693-701
    • /
    • 2002
  • In this study, one dimensional sediment movement numerical model(HEC-6) and semi-two dimensional sediment movement numerical model(GSTARS 2.1) were applied to solve the change of channel geometry in Bocheong stream. GSTARS 2.1 model was applied for the three selected sediment transport formulas(Ackers and White's, Engelund and Hanson, Yang formula) from 1993 to 2000 measured data on each section. The simulation results of Ackers and White formula for long -term bed changes are good when compared to the measured data. The HEC-6 model was applied for the simulation of one dimensional sediment movement for the same period. Comparison of the long-term simulations by GSTARS 2.1 and HEC-6 models with measured data shows that simulations by both models are in fair agreement with measured data in overall trend of the river bed changes. Comparisons of simulated cross sectional bed-elevations with measured data shows that GSTARS 2.1 model gives better agreement with than simulated results bed changes on the HEC-6 model.

Derivation of Sediment Concentration for the Computation of Total Sediment Discharge (總流砂量의 算定을 위한 流砂濃度式의 導出)

  • Lee, Jong-Seok;Kim, Jin-Gyu;Cha, Yeong-Gi
    • Water for future
    • /
    • v.29 no.1
    • /
    • pp.181-190
    • /
    • 1996
  • Quantitative computation of sediment discharge in alluvial channels is conducted by the determined method based on the incipient motion or the sediment transport concept. The derived formulation of sediment concentration in this study was developed in order to compute the total sediment discharge by a regression analysis method, one of the determined methods by the sediment transport concept. The used data set in derived formulation consists of the total 360 data including 135 and 225 measured data in natural channels and experimental channels, respectively. Also, the formulation by the multiple regression analysis was composed of independent bariables of flow depth, mean velocity, channel slope, Froude number and median diameter in bed materials.

  • PDF

Analysis of Sediment Flushing Effect for Reservoir Sedimentation Management of the Patrind Dam in Pakistan (파키스탄 파트린드댐의 저수지 퇴사관리를 위한 배사효과 분석)

  • Noh, Joonwoo;Park, Jinhyeog;Hur, Youngteck;Kim, Sangho
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.799-807
    • /
    • 2013
  • Reservoir sedimentation is one of the major concerns for sustainable reservoir operation. Since sediment concentration of the rivers in the Himalayan Mountain is very high, a proper sediment management scheme is necessary. This paper presents long-term reservoir sedimentation and sediment flushing based on the gate operation. Focused on the reservoir to be constructed for the Patrind hydropower project in Pakistan, 4 different flushing scenarios were proposed in this study to prevent successive sedimentation. By extending flushing period and by increasing the flushing discharge for 2 times, the flushing rate increases up to 53.2% and 43.6% in proportion to flushing period and discharge, respectively. Based on the simulation presented in this paper, it is expected to establish efficient sediment management plan to increase hydro power generation and sediment flushing simultaneously.

Stable Channel Design for the Gravel-bed River Considering Design Constraints (설계구속인자를 고려한 자갈하상 하천의 안정하도 설계)

  • Ji, Un;Jang, Eun-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2860-2867
    • /
    • 2015
  • Stable channel design is to determine the width, depth and slope for satisfying the condition that the upstream incoming sediment rate is equal to the sediment transport rate at the design channel. Therefore, the most sensitive variable when designing a stable channel is the selection of a sediment transport equation applied for the channel design. Especially if in the case of gravel beds the designer uses the equation developed by using the data of sand rivers, the calculation result of the stable channel section has large errors. In this study, the stable channel design has been applied to the gravel bed river using the previous stable channel design program with newly added the sediment transport equation for gravel beds; and the stable channel section considering design constraints has been produced by using the analytical method. As results, in the case of the application with the fixed width, the depth predicted by Ackers and White's equation was the shallowest and Meyer-Peter and $M\ddot{u}ller's$ equation was 0.8 m deeper than the current section of 2.4 m. In the case of the application with the fixed depth, the width predicted by Engelund and Hansen's equation was twice wider than the current section and by Meyer-Peter and $M\ddot{u}ller's$ equation was 20 m wider than the current section of 44 m.

Sensitivity Analysis of Sediment Transport Scaling Factors on Cross-Shore Beach Profile Changes using Deflt3D (해빈 단면의 지형변화 모의를 위한 Delft3D 내의 표사이동 관련 매개변수의 민감도 분석)

  • Yang, Jung-A;Son, Sangyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.493-500
    • /
    • 2019
  • In this study, sensitivity analysis of sediment transport scaling factors in Delft3D-Morphology was performed to examine the effect those parameters on simulation results of cross-shore profile changes. For numerical experiments, one-year wave time series data which were observed in 2018 on the Maengbang coast in Gangwon prefecture were applied as external force. Bathymetric data observed in January and October of the same year were used as initial bathymetric data and annual bathymetric change data, respectively. The simulation performance of the model was evaluated based on the Brier Skill Score index for each part by dividing an arbitrary cross section within the calculation domain into the onshore and offshore parts. As a result, it was found thet the fBED variable has a slight effect on the simulation results. The fBEDW and fSUSW variables show good simulation performance in onshore part when the value less than 0.5 is applied and vice versa. Among the experimental conditions, the optimal combinations of variables are fBED = 1.0, fBEDW = 1.0, fSUSW = 0.1 for the onshore region and fBED = 1.0, fBEDW = 1.0, fSUSW = 0.5 for the offshore region. However, since these combinations were derived based on the observation data on Maengbang beach in 2018, users should be careful when applying those results to other areas.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

Hydrodynamic Analysis at Nakdong River Confluences (낙동강 주요 합류부에서의 동역학적 수리해석)

  • Han, Kun Yeun;Kim, Ji Sung;Yang, Seung Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.908-911
    • /
    • 2004
  • The purpose of this study is to investigate the applicability of the two dimensional model in natural rivers. In this study, two dimensional unite element model, SMS, is used to simulate a complex flow along with the sediment movements in the natural river. The RMA-2 model embeded in SMS is used to simulate flow phenomena and SED-2D model is employed to simulate sediment transport. The model is applied to the confluence zone of the Gam River and mouth of Nakdong River. For model calibration, the result of the unsteady flow analysis is compared with the Typhoon 'Rusa' data. In addition, the runoff analysis was conducted for the determination of the project flood and the flood forecasting. The simulation results presented the characteristics of two dimensional flow with velocity vector and flow depth. The sediment transport characteristics are shown in terms of sediment concentration as well as bed elevation change. Accordingly, the SMS model in this study turned out to be very effective tool for the simulation of the hydrodynamic characteristics under the various flow conditions and corresponding sediment transports in natural rivers.

  • PDF

Analysis for the Effectiveness of Sedimentation Reduction Using the Channel Contraction Method at the Estuary Barrage (하구둑에서의 하폭축소 방법을 이용한 퇴사저감 효과 분석)

  • Ji, Un;Kim, Gwon-Han;Yeo, Woon-Kwang
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.31-40
    • /
    • 2011
  • In this study, the methods of sedimentation reduction for the estuary barrage were analyzed using the CCHE2D bed change model. Especially, the effectiveness of sediment dredging currently applied in the field was evaluated quantitatively and also the channel contraction method which is a substitute method was analyzed for the Nakdong River Estuary Barrage (NREB). The numerical model was calibrated and validated for the sediment transport equations and transport modes. In the NREB case, the Ackers and White formula and bed load type was the most similar to the field condition. As a results of the dredging simulation, there was the sedimentation reduction effect of 0.2 m in the bed changes. Furthermore, the analysis result of the channel contraction method represented that the sedimentation reduction effects of the average 0.4 m and the maximum 2.0 m were produced.