• Title/Summary/Keyword: Beas2B cell

Search Result 45, Processing Time 0.039 seconds

Proliferative and Inhibitory Activity of Siberian ginseng (Eleutherococcus senticosus) Extract on Cancer Cell Lines; A-549, XWLC-05, HCT-116, CNE and Beas-2b

  • Cichello, Simon Angelo;Yao, Qian;Dowell, Ashley;Leury, Brian;He, Xiao-Qiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4781-4786
    • /
    • 2015
  • Siberian ginseng (Eleutherococcus senticosus) is used primarily as an adaptogen herb and also for its immune stimulant properties in Western herbal medicine. Another closely related species used in East Asian medicine systems i.e. Kampo, TCM (Manchuria, Korea, Japan and Ainu of Hokkaido) and also called Siberian ginseng (Acanthopanax senticosus) also displays immune-stimulant and anti-cancer properties. These may affect tumour growth and also provide an anti-fatigue effect for cancer patients, in particular for those suffering from lung cancer. There is some evidence that a carbohydrate in Siberian ginseng may possess not only immune stimulatory but also anti-tumour effects and also display other various anti-cancer properties. Our study aimed to determine the inhibitory and also proliferative effects of a methanol plant extract of Siberan ginseng (E. senticosus) on various cancer and normal cell lines including: A-549 (small cell lung cancer), XWLC-05 (Yunnan lung cancer cell line), CNE (human nasopharyngeal carcinoma cell line), HCT-116 (human colon cancer) and Beas-2b (human lung epithelial). These cell lines were treated with an extract from E. senticosus that was evaporated and reconstituted in DMSO. Treatment of A-549 (small cell lung cancer) cells with E. senticosus methanolic extract showed a concentration-dependent inhibitory trend from $12.5-50{\mu}g/mL$, and then a plateau, whereas at 12.5 and $25{\mu}g/mL$, there is a slight growth suppression in QBC-939 cells, but then a steady suppression from 50, 100 and $200{\mu}g/mL$. Further, in XWLC-05 (Yunnan lung cancer cell line), E. senticosus methanolic extract displayed an inhibitory effect which plateaued with increasing dosage. Next, in CNE (human nasopharyngeal carcinoma cell line) there was a dose dependent proliferative response, whereas in Beas-2 (human lung epithelial cell line), an inhibitory effect. Finally in colon cancer cell line (HCT-116) we observed an initially weak inhibitory effect and then plateau.

The Decreased Expression of Fbxw7 E3 Ligase Mediated by Cancer Upregulated Gene 2 Confers Cancer Stem Cell-like Phenotypes (CUG2 유전자에 의하여 감소된 FBXW7 E3 ligase 발현이 유사-종양줄기세포 표현형을 유도)

  • Yawut, Natpaphan;Kim, Namuk;Budluang, Phatcharaporn;Cho, Il-Rae;Kaowinn, Sirichat;Koh, Sang Seok;Kang, Ho Young;Chung, Young-Hwa
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.271-278
    • /
    • 2022
  • The detailed mechanism by which cancer upregulated gene 2 (CUG2) overexpression induces cancer stem cell-like phenotypes is not fully understood. The downregulation of FBXW7 E3 ligase, a tumor suppressor known for its proteolytic regulation of oncogenic proteins such as cyclin E, c-Myc, Notch, and Yap1, has been frequently reported in several types of tumor tissues, including those in the large intestine, cervix, and stomach. Therefore, we investigated whether FBXW7 is involved in CUG2-induced oncogenesis. In this study, the decreased expression of FBXW7 was examined in human lung adenocarcinoma A549 (A549-CUG2) and human bronchial BEAS-2B cells (BEAS-CUG2) overexpressing CUG2 and compared with control cells stably expressing an empty vector (A549-Vec or BEAS-Vec). Treatment with MG132 (a proteosome inhibitor) prevented the degradation of FBXW7 and Yap1 proteins, which are substrates of the FBXW7 E3 ligase. To address the role of Fbxw7 in the development of cancer stem cell (CSC) phenotypes, we suppressed Fbxw7 protein levels using its siRNA. We observed that decreased levels of FBXW7 enhanced cell migration, invasion, and spheroid size and number in A549-Vec and BEAS-Vec cells. The enforced expression of FBXW7 produced the opposite results in A549-CUG2 and BEAS-CUG2 cells. Furthermore, the downregulation of FBXW7 elevated the activities of EGFR, Akt, and ERK1/2 and upregulated β-catenin, Yap1, and NEK2, while the enforced expression of FBXW7 generated the opposite results. We thus propose that FBXW7 downregulation induced by CUG2 confers CSC-like phenotypes through the upregulation of both the EGFR-ERK1/2 and β-catenin-Yap1-NEK2 signaling pathways.

Roles of Matrix Metalloproteinases on Intracellular Staphylococcus aureus Growth in Bronchial Epithelial Cell (황색포도알균의 감염에 따른 세포 내에서의 균의 증식과 Matrix Metalloproteinase (MMP)의 역할)

  • Min, Bo Ram;Lee, Young Mi;Park, Jae Seok;Choi, Won-Il;Kwon, Kun Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.1
    • /
    • pp.22-27
    • /
    • 2008
  • Background: Staphylococcus aureus frequently colonizes and infects hospitalized patients. Respiratory infections with Staphylococcus aureus are common in patients with compromised airway defenses. However the mechanisms of S. aureus invasion from colonization to the epithelium are unclear. Cell invasion by S. aureus would require destruction of the extracellular matrix, which is believed to be the result of increased matrix metalloproteinases (MMP) activity. Methods: In this study, respiratory epithelial cells were infected with S. aureus. After removing the extracellular bacteria by washing, the internalized bacteria in the cells were assessed by counting the colonized forming units (CFUs). The cell adhesion proteins, dysadherin and E-cadherin, were evaluated by Western blotting. The MMPs in the bacterial invasion were evaluated by pretreating the cells with GM6001, a MMP inhibitor. Results: The internalization of S. aureus was found to be both time and dose dependent, and the increase in MMP 2 and 9 activity was also dependent on the incubation time and the initial amount of bacterial inoculation. The invasion of S. aureus was attenuated by GM6001 after 12 hours incubation with a multiply of infection (MOI)=50. The expression of dysadherin, a membrane protein, was increased in a time and dose dependent manner, while the expression of E-cadherin was decreased. Conclusion: MMPs may mediate the invasion of S. aureus into epithelial cells.

Effects of Nicotine, Cotinine and Benzopyrene as Smoke Components on the Expression of Antioxidants in Human Bronchial Epithelial Cells (흡연성분 중 Nicotine, Cotinine, Benzopyrene이 인체 기관지 상피세포에서 항산화제의 발현에 미치는 영향)

  • Kim, Yong Seok;Lee, Jae Hyung;Kim, Sang Heon;Kim, Tae Hyung;Sohn, Jang Won;Yoon, Ho Joo;Park, Sung Soo;Shin, Dong Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.3
    • /
    • pp.197-202
    • /
    • 2007
  • Background: Cigarette smoking is an important risk factor for chronic bronchitis and COPD. Airway epithelial cells exposed to cigarette smoke components such as nicotine, cotinine and benzopyrene can generate reactive oxygen species (ROS) and be subject to oxidative stress. This oxidative stress can induce the inflammatory response in the lung by the oxidant itself or by the release of proinflammatory cytokines. It has been reported that nicotine stimulates ROS, which are associated with NF-${\kappa}B$. Methods: Beas2B cells were treated with nicotine, cotinine and benzopyrene. RT PCR was used to measure the expression of several antioxidant factors using the total RNA from the Beas2B cells. The level of superoxide dismutase(CuZnSOD), thioredoxin, glutathione reductase expression was examined. Results: 0.5 to 4 hours after the benzopyrene, nicotine and cotinine theatments, the level of thioredoxin and glutathione reductase expression decreased. Longer exposure to these compounds for 24 to 72 hours inhibited the expression of most of these antioxidant factors. Conclusion: During exposure to smoke compounds, thioredoxin and glutathione reductase are the key antioxidant factors induced sensitively between 0.5 and 4 hours but the levels these antioxidants decrease between 24 hour and 72hours.

Role of PI3K/Akt Pathway in the Activation of IκB/NF-κB Pathway in Lung Epithelial Cells (폐 상피세포에서 PI3K/Akt 경로가 IκB/NF-κB 경로의 활성화에 미치는 영향)

  • Lee, Sang-Min;Kim, Yoon Kyung;Hwang, Yoon-Ha;Lee, Chang-Hoon;Lee, Hee-Seok;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.5
    • /
    • pp.551-562
    • /
    • 2003
  • Background : NF-${\kappa}B$ is a characteristic transcriptional factor which has been shown to regulate production of acute inflammatory mediators and to be involved in the pathogenesis of many inflammatory lung diseases. There has been some evidence that PI3K/Akt pathway could activate NF-${\kappa}B$ in human cell lines. However, the effect of PI3K/Akt pathway on the activation of NF-${\kappa}B$ varied depending on the cell lines used in the experiments. In this study we evaluated the effect of PI3K/Akt pathway on the activation of NF-${\kappa}B$ in human respiratory epithelial cell lines. Methods : BEAS-2B, A549 and NCI-H157 cell lines were used in this experiment. To evaluate the activation of Akt activation and I${\kappa}B$ degradation, cells were analysed by western blot assay using phospho-specific Akt Ab and $I{\kappa}B$ Ab. To block PI3K/Akt pathway, cells were pretreated with wortmannin or LY294002 and transfected with dominant negative Akt (DN-Akt). For IKK activity, immune complex kinase assay was performed. To evaluate the DNA binding affinity and transcriptional activity of NF-${\kappa}B$, electrophoretic mobility shift assay (EMSA) and luciferase assay were performed, respectively. Results : In BEAS-2B, A549 and NCI-H157 cell lines, Akt was activated by TNF-$\alpha$ and insulin. Activation of Akt by insulin did not induce $I{\kappa}B{\alpha}$ degradation. Blocking of PI3K/Akt pathway via wortmannin/LY294002 or DN-Akt did not inhibit TNF-$\alpha$-induced $I{\kappa}B{\alpha}$ degradation or IKK activation. Inhibition of PI3K/Akt did not affect TNF-$\alpha$-induced NF-${\kappa}B$ activation. Overexpression of DN-Akt did not block TNF-$\alpha$-induced transcriptional activation of NF-${\kappa}B$, but wortmannin enhanced TNF-$\alpha$-induced in NF-${\kappa}B$ transcriptional activity. Conclusion : PI3K/Akt was not involved in TNF-$\alpha$-induced $I{\kappa}B{\alpha}$ degradation or transcriptional activity of NF-${\kappa}B$ in human respiratory epithelial cell lines.

Simultaneous Determination of Seven Compounds by HPLC-PDA and Cytotoxicity of Samchulkunbi-tang (삼출건비탕의 HPLC-PDA 동시 분석법 설정 및 세포독성)

  • Seo, Chang-Seob;Lee, Mee-Young;Kim, Jung-Hoon;Lee, Jin-Ah;Shin, Hyeun-Kyoo
    • The Korea Journal of Herbology
    • /
    • v.25 no.3
    • /
    • pp.65-71
    • /
    • 2010
  • Objectives:To develop and validate HPLC-PDA methods for simultaneous determination of seven constituents in Samchulkunbi-tang (SKT). Additionally, we investigated the cytotoxicity against BEAS-2B cell line and splenocytes of SKT. Methods:Reverse-phase chromatography using a Gemini $C_{18}$ column operating at $40^{\circ}C$, and photodiode array (PDA) detection at 230, 254 and 280 nm, were used for quantification of the three marker components of SKT. The mobile phase using a gradient flow consisted of two solvent systems. Solvent A was 1.0% (v/v) aqueous acetic acid and solvent B was acetonitrile with 1.0% (v/v) acetic acid. The cytotoxicity of SKT were measured by the CCK-8 assay method. Results:Calibration curves were acquired with $r^2$>0.9999, and the relative standard deviation (RSD) values (%) for intra- and inter-day precision were less than 6.0%. The recovery rate of each compound was in the range of 86.89-109.78%, with an RSD less than 4.0%. The contents of seven compounds in SKT were 1.39-6.84 mg/g. SKT had no cytotoxicity effect at 50-200 ${\mu}g$/mL concentrations. Conclusions:The established method will be helpful to improve quality control and in vitro efficacy study of SKT.

Pro-inflammatory Cytokine Expression Through NF-${\kappa}B/I{\kappa}B$ Pathway in Lung Epithelial Cells (폐 상피세포에서 NF-${\kappa}B/I{\kappa}B$ 경로에 의한 염증매개 사이토카인의 발현)

  • Park, Gye-Young;Lee, Seung-Hee;HwangBo, Bin;Yim, Jae-Joon;Lee, Choon-Taek;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.3
    • /
    • pp.332-342
    • /
    • 2000
  • Background : The importance of pro-inflammatory cytokines, especially tumor necrosis factor $\alpha$ (INF-$\alpha$) and interleukin-1$\beta$ (IL-1$\beta$), have been extensively documented in the generation of inflammatory lung disease. Lung epithelial cells are also actively involved in initiating and maintaining inflammation by producing pro-inflammatory mediators. Understanding the mechanism of pro-inflammatory cytokine expression in lung epithelial cells is crucial to the development of new therapeutic modalities for inflammatory lung disease. Transcription of most pro-inflammatory cytokines is dependent on the activation of NF-${\kappa}B$. However, the relationship between pro-inflammatory cytokine expression and NF-${\kappa}B/I{\kappa}B$ pathway in lung epithelial cells is not clear. Methods : BEAS-2B, A549, Na-H157, NCI-H719 cells were stimulated with IL-$1{\beta}$ or TNF-$\alpha$ at various times, and then IL-8 and TNF-$\alpha$mRNA expressions were assayed by Northern blot analysis. IL-$1{\beta}$ or TNF-$\alpha$-induced NF-${\kappa}B$ activation was assessed by the nuclear translocation of p65 NF-${\kappa}B$ subunit. The degradation of $I{\kappa}B{\alpha}$ and $I{\kappa}B{\beta}$ by IL-$1{\beta}$ or TNF-$\alpha$stimulation was assayed by Western blot analysis. The phosphorylation of $I{\kappa}B{\alpha}$ was evaluated by Western blot analysis after pre-treating cells with proteasome inhibitor followed by IL-$1{\beta}$ or TNF-$\alpha$ stimulation. The basal level of IKK $\alpha$ expression was evaluated by Western blot analysis. Results: $I{\kappa}B{\alpha}$ and $I{\kappa}B{\alpha}$ was rapidly degraded after 5 minutes of incubation with IL-$1{\beta}$ or TNF-$\alpha$ in BEAS-2B, A549, and NCI-H157 cells. The activation of NF-${\kappa}B{\alpha}$ and the induction of IL-8 and TNF-$\alpha$ mRNA expression were observed by IL-$1{\beta}$ or TNF-$\alpha$ stimulation in these cells. In contrast, neither the changes in NF-${\kappa}B/I{\kappa}B$ pathway nor IL-8 and TNF-$\alpha$mRNA expression was induced by IL-$1{\beta}$ or TNF-$\alpha$ stimulation in NCI-H719 cells. IL-$1{\beta}$ and TNF-$\alpha$-induced $I{\kappa}B$ phosphorylation was observed in BEAS-2B, A549, and NCI-H157 cells, but not in NCI-H719 cells. The basal level of IKK$\alpha$ expression was not different between cell. Conclusion : NF-${\kappa}B/I{\kappa}B$ pathway plays an important role in the expression of pro-inflammatory cytokine in most lung epithelial cells. The absence of the effect on NF-${\kappa}B/I{\kappa}B$ pathway in NCI-H719 cells sæms to be due to the defect in the intracellular signal transduction pathway upstream to IKK.

  • PDF

Regulation of CYP1A1 and Inflammatory Cytokine by NCOA7 Isoform 4 in Response to Dioxin Induced Airway Inflammation

  • Cho, Sung-Hwan;Park, Shin Young;Lee, Eun Jeong;Cho, Yo Han;Park, Hyun Sun;Hong, Seok-Ho;Kim, Woo Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • Background: Aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, binds to a wide variety of synthetic and naturally occurring compounds. AhR is involved in the regulation of inflammatory response during acute and chronic respiratory diseases. We investigated whether nuclear receptor coactivator 7 (NCOA7) could regulate transcriptional levels of AhR target genes and inflammatory cytokines in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated human bronchial epithelial cells. This study was based on our previous study that NCOA7 was differentially expressed between normal and chronic obstructive pulmonary disease lung tissues. Methods: BEAS-2B and A549 cells grown under serum-free conditions were treated with or without TCDD (0.15 nM and 6.5 nM) for 24 hours after transfection of pCMV-NCOA7 isoform 4. Expression levels of cytochrome P4501A1 (CYP1A1), IL-6, and IL-8 were measured by quantitative real-time polymerase chain reaction. Results: The transcriptional activities of CYP1A1 and inflammatory cytokines were strongly induced by TCDD treatment in both BEAS-2B and A549 cell lines. The NCOA7 isoform 4 oppositely regulated the transcriptional activities of CYP1A1 and inflammatory cytokines between BEAS-2B and A549 cell lines. Conclusion: Our results suggest that NCOA7 could act as a regulator in the TCDD-AhR signaling pathway with dual roles in normal and abnormal physiological conditions.

Paraquat-Induced Apoptotic Cell Death in Lung Epithelial Cells (폐상피세포에서 Paraquat에 의한 아포프토시스에 관한 연구)

  • Song, Tak Ho;Yang, Joo Yeon;Jeong, In Kook;Park, Jae Seok;Jee, Young Koo;Kim, Youn Seup;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.61 no.4
    • /
    • pp.366-373
    • /
    • 2006
  • Background: Paraquat is extremely toxic chemical material, which generates reactive oxygen species (ROS), causing multiple organ failure. In particular, paraquat leads to irreversible progressive pulmonary fibrosis. Exaggerated cell deaths exceeding the normal repair of type II pneumocytes leads to mesenchymal cells proliferation and fibrosis. This study examined the followings; i) whether or not paraquat induces cell death in lung epithelial cells; ii) whether or not paraquat-induced cell deaths are apoptosis or necrosis; and iii) the effects of N-acetylcysteine, dexamethasone, and bcl-2 on paraquat-induced cell deaths. Methods: A549 and BEAS-2B lung epithelial cell lines were used. The cell viability and apoptosis were evalluated using a MTT assay, Annexin V staining was monitored by fluorescence microscopy, The level of bcl-2 inhibition was examined by establishing stable A549 pcDNA3-bcl-2 cell lines throung the transfection of pcDNA3-bcl-2 with the mock. Results: Paraquat decreased the cell viability in A549 and BEAS-2B cells in a dose and time dependent manner. The Annexin V assay showed that apoptosis was the type of paraquat-induced cell death. Paraquat-induced cell deaths was significantly inhibited by N-acetylcysteine, dexamethasone, and bcl-2 overexpression. The cell viability of A549 cells treated with N-acetylcysteine, and dexamethasone on the paraquat-induced cell deaths were increased significantly by 10 ~ 20%, particularly at high doses. In addition, the cell viability of A549 pcDNA3-bcl-2 cells overexpressing bcl-2 was significantly higher than the untransfected A549 cells. Conclusion: Paraquat induces apoptotic cell deaths in lung epithelial cells in a dose and time dependent manner. The paraquat-induced apoptosis of lung epithelial cells might occur through the mitochondrial pathway.

The Inhibitory Effects of Maekmundongcheongpye-eum and Liriopis Tuber on the IL-6, IL-16 and GM-CSF mRNA Levels in Human Epithelial Cells (맥문동청폐음과 맥문동이 인간기관지 상피세포의 IL-6, IL-16, GM-CSF mRNA level에 미치는 영향)

  • 정해준;정희재;정승기;이형구
    • The Journal of Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.11-23
    • /
    • 2002
  • Objectives: We aimed to identify the dose-dependent inhibitory effects of Maekmundongcheongpye-eum and Liriopis Tuber on the mRNA expression of IL-6, IL-16, GM-CSF involved in the asthma model. Methods: In the study BEAS-2B cell lines, human epithelial cells were used. These cells were stimulated with tumor necrosis factor $(TNF)-{\alpha}$ for artificial inflammatory expression. ${\beta}-actin$ messenger RNA (mRNA) was used by internal standard. After 24 hours of Maekmundongcheongpye-eum, Liriopis Tuber-treatment, total cellular RNAs were collected, treating RNAzol directly on the alive cells. Then the transcriptional activities of IL-6, 16, GM-CSF were measured by RT-PCR with electrophoresis. Results: In the Maekmundongcheongpye-eum study, the mRNA expression of IL-6 showed 48% transcriptional inhibitory effect compared to the control group in the $100{\;}{\mu}l/ml$ category (P<0.001). In the IL-16, there was 53% and 57% transcriptional inhibitory effect compared to the control group in the $20{\;}{\mu}l/ml$ and $100{\;}{\mu}l/ml$ categories (P<0.001). In the GM-CSF, there was no inhibitory effect. In the Liriopis Tuber study, the mRNA expression of IL-6 showed 43% transcriptional inhibitory effect compared to the control group in the $100{\;}{\mu}l/ml$ category (p<0.005). In the IL-16, 34% and 26% of transcriptional inhibitory effect was shown compared to the control group in the $20{\;}{\mu}l/ml$ and $100{\;}{\mu}l/ml$ categories, respectively (P<0.05). In the GM-CSF, there was no inhibitory effect. Conclusions: This study shows that Maekmundongcheongpye-eum and Liriopis Tuber have dose-dependent inhibitory effects on the mRNA expression of IL-6 and IL-16 in BEAS-2B cell lines, human epithelial cells. Advanced studies are required to investigate the mechanisms of inhibition by herbal medicine in the asthma model.

  • PDF