• Title/Summary/Keyword: Bearing wall

Search Result 352, Processing Time 0.029 seconds

Developmental Duration and Morphology of the Sea Star Asterias amurensis, in Tongyeong, Korea

  • Paik, Sang-Gyu;Park, Heung-Sik;Yi, Soon-Kil;Yun, Sung-Gyu
    • Ocean Science Journal
    • /
    • v.40 no.3
    • /
    • pp.177-182
    • /
    • 2005
  • The process of embryogenesis and larval development of the asteroid sea star Asterias amurensis $(U{\ddot{u}}tken)$ was observed, with special attention paid to morphological change and larval duration. In reproductive season, mature sea stars were collected under floating net cages, located in Tongyeong, southern Korea. The mature eggs are $138\;{\mu}m$ in average diameter, semi-translucent and orange in color, sperms in good condition appear light cream to white-gray in color. Embryos develop through the holoblastic equal cleavage stage and a wrinkled blastula stage that lasts about 9 hours after fertilization. Gastrulae bearing an expanded archenteron hatch from the fertilization envelope 22 hours after fertilization. At the end of gastrulation, rudiments of the left and right coelom are formed. By day 2, larvae possess complete alimentary canal and begin to feed. At this stage, the larva is called early bipinnaria. In 6-day-old larvae, the pre- and post- oral ciliated bands form complete circuits and the bipinnarial processes start to develop. By day 12, the lateral and anterior projection of the larval wall processes along the ciliated bands begins to thicken and curl, and the ciliated bands become more prominent. By day 32, early brachiolaria are presented with three pairs of brachiolar arms. Advanced brachiolaria with a well-developed brachiolar complex (three pairs of brachia and central adhesive disc) occur 6 weeks after fertilization. In the field, spawning of the sea star was observed in April to May, settlement form larvae and just settlements seem to occur from June to July, and early juveniles occur from August to September. Although we had not described the end of brachiolaria stage, it can be tentatively estimated that the duration of the pelagic stage of A. amurensis is 40 to 50 days.

A Study on the Genesis of Eonyang Amethyst Deposits (언양(彦陽) 자수정 광상(鑛床)의 성인(成因)에 관한 연구(硏究))

  • Youn, Seok-Tai;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.335-343
    • /
    • 1994
  • The Eonyang amethyst deposits are composed of vug quartz emplaced in the Eonyang granites of Mesozoic Cretaceous age. The Eonyang granites are composed of biotite granite, porphyritic biotite granite, aplite and miarolitic granite. The petrochemical data of the Eonyang granites show the trend of subalkaline magma, calc-alkaline magma, I-type granitoid and magnetite series. The vug quartz show the characteristic growth zoning (white quartz-smoky quartz-amethyst) from wall side. Generally fluid inclusions in the vug quartz can be divided into four main types based on compositions (I-type: gas inclusion, II-type: liquid inclusion, III-type: polyphase inclusion, IV-type: liquid $CO_2$-bearing inclusion). Solid phase of polyphase inclusions are halite(NaCl), sylvite(KCl), hematite ($Fe_2O_3$) and unknown anisotropic solid. Homogenization temperatures inferred from the fluid inclusion study ranges from $440^{\circ}C$ to $485^{\circ}C$ in white quartz, from $227^{\circ}C$ to $384^{\circ}C$ in smoky quartz, from $133^{\circ}C$ to $186^{\circ}C$ in amethyst, respectively. Salinities of fluid inclusions in each mineralization stages ranges from 40 wt.% to 58 wt.% in white and smoky quartz, from 1.0 wt.% to 8.7 wt.% in amethyst respectively. A consideration of the pressure regime during vug quartz deposition based on the boiling evidence suggests lithostatic pressure of less than 72 bars. This range of pressure indicate that vug quartz lay at depth of 750 m below the surface at the during mineralization.

  • PDF

A Study on the Spatial Elements of Flexible Apartments - Focusing on Local and Foreign Flexible Apartments - (가변형 공동주택의 공간 요소 특성 연구 - 국내외 가변형 공동주택을 중심으로 -)

  • Cho, Il-A;Park, Kyung-Hwan;Kim, Hyung-Woo
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.3 s.62
    • /
    • pp.66-75
    • /
    • 2007
  • In this study, by comparing the development and the space types of local and foreign flexible apartments, basic data will be derived for the development of various flexible types of apartments in Korea. A total of 60 unit plans, including 30 domestic cases and 30 overseas cases of flexible apartments, are analyzed for this study. In terms of the unit plan types, Korean apartments usually had a wide front bay with shallow depth, placing more rooms on the front bay; whereas foreign apartments tend to have various unit plan types: (1) a narrow front bay with deep depth, (2) a wide front bay with shallow depth, and (3) variegated open-plan types. Many apartments in foreign countries had a double-layered structure with the. upstairs and downstairs areas. In terms of the flexible types, many Korean apartments achieved interior flexibility using non-bearing wall or sliding doors; whereas foreign apartments had a flexible space by separating the support elements and the infill elements. There was found to be a close relationship between the location of support elements and the variability of unit plans. Support elements can be placed largely into three locations: (1) Between the front side bay and the rear side bay, (2) in the center bay of a unit plan, and (3) others. Depending on the location of support elements, various types of flexible unit plans can be created. Through a comparative analysis of domestic and foreign apartments, basic data that can be used for developing various flexible unit plans was derived.

Deterioration Characteristics through Evaluating the Level of Deterioration of High-rise and High-density Apartments (고층고밀 아파트단지의 노후특성 평가 연구 - 1기 신도시 중 분당신도시의 아파트단지를 대상으로 -)

  • Cho, Sung-Heui;Lee, Tae-Kyung;Oh, Deog-Seong
    • Journal of the Korean housing association
    • /
    • v.20 no.6
    • /
    • pp.89-99
    • /
    • 2009
  • The purpose of this research is to determine the deterioration characteristics of high-rise and high-density apartment complexes in 1st period new towns in order to regenerate apartments as sustainable residential environments in Korea. For this purpose, the level of deterioration was evaluated by using 'evaluating indicators of the level of deterioration of high-rise and high-density apartments'. The deterioration characteristics were determined inclusively and concretely based on evaluation results. In addition, the deterioration level according to residents' awareness of the deterioration of their apartment was evaluated. This study was conducted by methods of field data collection, staff interview, field measurement, and resident survey according to the measurement of the evaluating indicators. And the re-organized questionnaire based on the evaluating indicators was utilized for a survey of resident's awareness. The results are as follows: In the physical dimensions of apartments, the deterioration characteristics included deteriorated equipment and a decline in structural performance due to the aging of the apartment, a shortage of parking spaces, and the low flexibility of the bearing wall structure, etc. In terms of the social dimensions, the apartments showed an increase in the number of elderly households, a shortage of community facilities, and a lack of the opportunity for community participation etc. In terms of the economic dimensions, the apartments showed limitations in maintenance & repair and a lack of environmentally friendly features.

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.

Maxillary resection for cancer, zygomatic implants insertion, and palatal repair as single-stage procedure: report of three cases

  • Salvatori, Pietro;Mincione, Antonio;Rizzi, Lucio;Costantini, Fabrizio;Bianchi, Alessandro;Grecchi, Emma;Garagiola, Umberto;Grecchi, Francesco
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.13.1-13.8
    • /
    • 2017
  • Background: Oronasal/antral communication, loss of teeth and/or tooth-supporting bone, and facial contour deformity may occur as a consequence of maxillectomy for cancer. As a result, speaking, chewing, swallowing, and appearance are variably affected. The restoration is focused on rebuilding the oronasal wall, using either flaps (local or free) for primary closure, either prosthetic obturator. Postoperative radiotherapy surely postpones every dental procedure aimed to set fixed devices, often makes it difficult and risky, even unfeasible. Regular prosthesis, tooth-bearing obturator, and endosseous implants (in native and/or transplanted bone) are used in order to complete dental rehabilitation. Zygomatic implantology (ZI) is a valid, usually delayed, multi-staged procedure, either after having primarily closed the oronasal/antral communication or after left it untreated or amended with obturator. The present paper is an early report of a relatively new, one-stage approach for rehabilitation of patients after tumour resection, with palatal repair with loco-regional flaps and zygomatic implant insertion: supposed advantages are concentration of surgical procedures, reduced time of rehabilitation, and lowered patient discomfort. Cases presentation: We report three patients who underwent alveolo-maxillary resection for cancer and had the resulting oroantral communication directly closed with loco-regional flaps. Simultaneous zygomatic implant insertion was added, in view of granting the optimal dental rehabilitation. Conclusions: All surgical procedures were successful in terms of oroantral separation and implant survival. One patient had the fixed dental restoration just after 3 months, and the others had to receive postoperative radiotherapy; thus, rehabilitation timing was longer, as expected. We think this approach could improve the outcome in selected patients.

A Study on the Planning at the Pilotis Spaces of the Public Apartment Housing (Focused on the Structural Change) (임대아파트 필로티 공간의 계획에 관한 연구 (라멘구조로의 구조적 변화를 중심으로))

  • Ha, Song-Byung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.959-969
    • /
    • 2011
  • The purpose of this study is to analyze the present conditions of the pilotis spaces of the public apartment housing and to suggest the future planning means of the spaces. At the present time, most of the pilotis space has been constructed in wall-bearing method. However, post and beam method(or Rahmen) will be used due to the municipal public-housing policy. Observation of seven(7) different locations and twenty-eight(28) blocks, and interview with the residents were employed to gather the data. Regarding functional relevance, six types of the space were selected, and planning suggestions for each type were followed. Among others, the conclusions include: the pilotis space should be planned as an interior for the future, as well as it should be open enough to secure the view from the surroundings.

Variation of Stress Concentration Ratio with Area Replacement Ratio for SCP-Reinforced Soils under Quay Wall (치환율에 따른 안벽구조물 하부 SCP 복합지반의 응력분담비)

  • 김윤태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2004
  • In order to accelerate the rate of consolidation settlement, to reduce settlement, and to increase bearing capacity for soft ground under quay, sand compaction pile method (SCP) has usually been applied. SCP-reinforced ground is composite soil which consists of the sand pile and the surrounding soft soil. One of main important considerations in design and analysis for SCP-reinforced soils is stress concentration ratio according to area replacement ratio. In this paper, the numerical analysis was conducted to investigate characteristics of stress concentration ratio in composite ground. It was found that stress concentration ratio of composite ground is not constant as well as depends on several factors such as area replacement ratio, depth of soft soil, and consolidation process. The values of stress concentration ratio increase during loading stage due to stress transfer of composite soil, and reach up to 2.5∼12 according to area replacement ratio at the end of construction. After the end of consolidation, however, these values are converged to 2.5 to 6.0 irrespective of area replacement ratio due to increase in effective stress of soft soil during consolidation process.

CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part I - Variation in Cross-Sectional Shape of Groove (그루브의 Trap 효과에 대한 CFD 해석: 제 1부 − 그루브 단면 형상의 변화)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.101-105
    • /
    • 2016
  • Trap effect of groove is evaluated in a lubricating system using computational fluid dynamics (CFD) analysis. The simulation is based on the standard k-ε turbulence model and the discrete phase model (DPM) using a commercial CFD code FLUENT. The simulation results are also capable of showing the particle trajectories in flow field. Computational domain is meshed using the GAMBIT pre-processor. The various grooves are applied in order to improve lubrication characteristics such as reduction of friction loss, increase in load carrying capacity, and trapping of the wear particles. Trap effect of groove is investigated with variations in cross-sectional shape and Reynolds number in this research. Various cross-sectional shapes of groove (rectangular, triangle, U shaped, trapezoid, elliptical shapes) are considered to evaluate the trap effect in simplified two-dimensional sliding bearing. The particles are assumed to steel, and defined a single particle injection condition in various positions. The “reflect” boundary condition for discrete phase is applied to the wall boundary, and the “escape” boundary condition to “pressure inlet” and “pressure outlet” conditions. The streamlines are compared with particles trajectories in the groove. From the results of numerical analysis in the study, it is found that the cross-sectional shapes favorable to the creation of vortex and small eddy current are effective in terms of particle trapping effect. Moreover, it is found that the Reynolds number has a strong influence on the pattern of vortex or small eddy current in the groove, and that the pattern of the vortex or small eddy current affects the trap effect of the groove.

A simplified model proposal for non-linear analysis of buildings

  • Abdul Rahim Halimi;Kanat Burak Bozdogan
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.353-364
    • /
    • 2023
  • In this study, a method has been proposed for the static and dynamic nonlinear analysis of multi-storey buildings, which takes into account the contribution of axial deformations in vertical load-bearing elements, which are especially important in tall and narrow structures. Shear deformations on the shear walls were also taken into account in the study. The presented method takes into account the effects that are not considered in the fishbone and flexural-shear beam models developed in the literature. In the Fishbone model, only frame systems are modeled. In the flexural shear beam model developed for shear wall systems, shear deformations and axial deformations in the walls are neglected. Unlike the literature, with the model proposed in this study, both shear deformations in the walls and axial deformations in the columns and walls are taken into account. In the proposed model, multi-storey building is represented as a sandwich beam consisting of Timoshenko beams pieced together with a double-hinged beam. At each storey, the total moment capacities of the frame beams and the coupled beams in the coupled shear walls are represented as the equivalent shear capacity. On the other hand, The sums of individual columns and walls moment at the relevant floor level are represented as equivalent moment capacity at that floor level. At the end of the study, examples were solved to show the suitability of the proposed method in this study. The SAP2000 program is employed in analyses. In a conclusion, it is observed that among the solved examples, the proposed sandwich beam model gives good results. As can be seen from these results, it is seen that the presented method, especially in terms of base shear force, gives very close results to the detailed finite element method.