• Title/Summary/Keyword: Bearing strut

Search Result 23, Processing Time 0.02 seconds

The Effect of Bearing Strut on the Performance of the Inducer (베어링 지지부가 터보펌프용 인듀서의 성능에 미치는 영향)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Jin-Sun;Hong, Soon-Sam;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.519-522
    • /
    • 2006
  • Experimental and computational studies on an turbopump inducer with and without a bearing strut were performed to evaluate the effects of a strut on the performance of an inducer. Global performance data such as head rise and efficiency, and detailed flow characteristics such as surface static pressures were measured and compared with computational results. Generally a good agreement is observed between experimental and computational results, but some discrepancies are observed due to complex flow features such as backflows at the inlet and strut/inducer interactions. For the flow rates where the backflow region is large, installing a strut enhanced the hydraulic performance of the inducer by diminishing the size of the backflows. The results also show that the strut has negligible effect on the suction performance of the inducer.

  • PDF

Effects of a Bearing Strut on the Performance of an Inducer for Turbopumps (베어링 지지부가 터보펌프용 인듀서의 성능에 미치는 영향)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Jin-Sun;Hong, Soon-Sam;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.1022-1027
    • /
    • 2007
  • Experimental and computational studies on a turbopump inducer with and without a bearing strut were performed to evaluate the effects of a strut on the performance of an inducer. Head rise, efficiency and surface static pressures were measured and compared with computational results. Generally a good agreement is observed between experimental and computational results, but some discrepancies are observed due to complex flow features such as backflows at the inlet and strut/inducer interactions. For the flow rates where the backflow region is large, installing a strut enhanced the hydraulic performance of the inducer by diminishing the size of the backflows. The results also show that the strut has negligible effect on the suction performance of the inducer.

The effect of cyclic loading on the rubber bearing with slit damper devices based on finite element method

  • Saadatnia, Mahdi;Riahi, Hossein Tajmir;Izadinia, Mohsen
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.215-222
    • /
    • 2020
  • In this paper, slit steel rubber bearing is presented as an innovative seismic isolator device. In this type of isolator, slit steel damper is an energy dissipation device. Its advantages in comparison with that of the lead rubber bearing are its simplicity in manufacturing process and replacement of its yielding parts. Also, slit steel rubber bearing has the same ability to dissipate energy with smaller value of displacement. Using finite element method in ABAQUS software, a parametric study is done on the performance of this bearing. Three different kinds of isolator with three different values of strut width, 9, 12 and 15 mm, three values of thickness, 4, 6 and 8 mm and two steel types with different yield stress are assessed. Effects of these parameters on the performance characteristics of slit steel rubber bearing are studied. It is shown that by decreasing the thickness and strut width and by selecting the material with lower yield stress, values of effective stiffness, energy dissipation capacity and lateral force in the isolator reduce but equivalent viscous damping is not affected significantly. Thus, by choosing appropriate values for thickness, strut width and slit steel damper yield stress, an isolator with the desired behavior can be achieved. Finally, the performance of an 8-storey frame with the proposed isolator is compared with the same frame equipped with LRB. Results show that SSRB is successful in base shear reduction of structure in a different way from LRB.

Strength Evaluation of Reinforced Concrete Corbels using Nonlinear Strut-Tie Model Approach (비선형 스트럿-타이 모델 방법에 의한 철근콘크리트 코벨의 강도 평가)

  • 윤영묵;신용목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.391-396
    • /
    • 2003
  • The concrete corbels consist of various failure mechanisms such as the yielding of the tension reinforcement, the crushing or splitting from compression concrete struts, and localized bearing or shearing failure under the loading plate. However, predicting those failure mechanisms is very difficult. In this study, the ACI 318-02, the softened strut-tie model approach, and the nonlinear strut-tie model approach are applied to ultimate strength analysis of normal strength concrete corbels tested to failure. From the result of the analysis, an effective analysis and design method of normal strength concrete corbels is suggested.

  • PDF

Strut-And-Tie Model for Headed Bar Anchored in Exterior Beam-Column Joint with Transverse Reinforcement (전단보강근이 배근된 외부 보기둥 접합부에 정착된 헤드 철근의 스트럿-타이 모델)

  • Chun, Sung-Chul;Hong, Sung-Gul;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.454-457
    • /
    • 2006
  • This study presents a strut-and-tie model for the development of headed bars in an exterior beam-column joint with transverse reinforcements. The tensile force of a headed bar is considered to be developed by head bearing together with bond along a bonded length as a partial embedment length. The model requires construction of struts with biaxially compressed nodal zones for head bearing and fan-shaped stress fields against neighboring nodal zones for bond stresses along the bonded length. Due to the existence of transverse reinforcements, the fan-shaped stress fields are divided into direct and indirect fan-shaped stress fields. A required development length and head size of a headed bar can be optimally designed by adjusting a proportion between a bond contribution and bearing contribution.

  • PDF

Shear behavior of steel reinforced concrete shallow floor beam: Experimental and theoretical study

  • Chen, Yang;Ren, Chong;Yuan, Yuqing;Yang, Yong
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.677-684
    • /
    • 2022
  • This paper reports experimental investigation on shear behavior of steel reinforced concrete (SRC) shallow floor beam, where the steel shape is embedded in concrete and the high strength bolts are used to transfer the shear force along the interface between the steel shape and concrete. Six specimens were conducted aiming to provide information on shear performance and explore the shear bearing capacity of SRC shallow floor beams. The effects of the height of concrete slab, the size and the type of the steel section on shear performance of beams were also analyzed in the test. Based on the strut-and-tie model, the shear strength of the SRC shallow floor beam was proposed. Experimental results showed that composite shallow floor beam exhibited satisfactory composite behavior and all of the specimen failed in shear failure. The shear bearing capacity increased with the increasing of height of concrete slab and the size of steel shape, and the bearing capacities of beam specimens with castellated steel shape was slightly lower than those of specimens with H-shaped steel section. Furthermore, the calculations for evaluating the shear bearing capacity of SRC shallow floor beam were verified to be reasonable.

Prediction behavior of the concentric post-tensioned anchorage zones

  • Shangda Chen;Linyun Zhou
    • Advances in concrete construction
    • /
    • v.16 no.4
    • /
    • pp.217-230
    • /
    • 2023
  • Methods for designing the post-tensioned anchorage zones at ultimate limit state has been specified in current design codes based on strut-and-tie models (STM). However, it is still not clear how to estimate the serviceability behavior of the anchorage zones. The serviceability is just indirectly taken into account by means of the reasonable reinforcement detailing. To address this issue, this paper is devoted to developing a modified strut-and-tie model (MSTM) to predict the behavior of concentric anchorage zones throughout the loading process. The principle of stationary complementary energy is introduced into STM at each load step to satisfy the compatibility condition and generate the unique MSTM. The structural behavior of anchorage zones can be achieved based on MSTM from loading to failure. Simplified formulas have been proposed to estimate the first cracking load, bearing capacity and maximum crack width with the consideration of the details of reinforcement bursting bars. The proposed model provides a definite method to control the bursting crack width in concentric anchorage zones. Four specimens with different bearing plate ratios have been designed and tested to validate the proposed method.

Stiffness of hybrid systems with and without pre-stressing

  • Miljanovic, Sladana;Zlatar, Muhamed
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.147-161
    • /
    • 2020
  • Constructive merging of "basic" systems of different behavior creates hybrid systems. In doing so, the structural elements are grouped according to the behavior in carrying the load into a geometric order that provides sufficient load and structure functionality and optimization of the material consumption. Applicable in all materializations and logical geometric forms is a transparent system suitable for the optimization of load-bearing structures. Research by individual authors gave insight into suitable system constellations from the aspect of load capacity and the approximatemethod of estimating the participation of partialstiffnesswithin the rigidity ofthe hybrid system. The obtained terms will continue to be the basisfor our own research of the influence of variable parameters on the behavior of hybrid systemsformed of glued laminated girder and cable of different geometric shapes. Previous research has shown that by applying the strut-type hybrid systems can increase the load capacity and reduce the deformability ofthe free girder.The implemented parametric analysis pointsto the basic parameterin the behavior of these systems-the rigidity ofindividual elements and the overallstiffnessofthe system.The basic idea ofpre-stressing is that, in the load system or individual load-bearing element, prior to application of the exploitation load, artificially challenge the forcesthatshould optimize the finalsystembehaviorin the overall load. Pre-stressing is possible only if the supporting system orsystem's element possesssufficientstrength orstiffness, orreaction to the imposed forces of pre-stressing. In this paper will be presented own research of the relationship of partial stiffness of strut-type hybrid systemsofdifferentgeometric forms.Conducted parametric analysisofhybridsystemswithandwithoutpre-stressing, and on the example of the glulam-steel strut-type hybrid system under realistic conditions of change in the moisture content ofthe wooden girder,resulted in accurate expressions and diagramssuitable for application in practice.

2D SUB-3D STM Approach for Design and Analysis of 3D Structural Concrete (3D 콘크리트 부재의 해석 및 설계를 위한 2D SUB-3D STM 방법)

  • 윤영묵;김승억;오진우;박정웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.415-420
    • /
    • 1998
  • In this paper, 2D SUB-3D STM approach for analysis and design of 3D structural concrete is presented. In the approach several 2D sub strut-tie models which are representations of compressive and tensile stress flows of each projected plane of 3D structural concrete are utilized in the sketch of a 3D strut-tie model, in the evaluation of effective strengths of compressive concrete struts, and in the verification of geometric compatibility and bearing capacity of critical nodal zones of 3D strut-tie model. To prove the validity and rationality of the suggested approach, the behavior and strength of a prestressed box girder diaphragm tested to failure are evaluated.

  • PDF

Analysis of PSC Box Girder Anchorage Zone using FEM and 2D SUB-3D STM Approach (유한요소법 및 유사 3 차원 스트릿-타이 모델 방법을 이용한 PSC 박스거더 정착부의 해석)

  • Yun, Young-Mook;Kim, Seung-Eock;Oh, Jin-Woo;Park, Jung-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.113-129
    • /
    • 2000
  • This study evaluates the behavior and strength of an anchorage zone of the prestressed concrete box girder bridge on the Kyungboo highway railroad using the 2D SUB-3D STM approach and a linear elastic finite element analysis. The 2D SUB-3D STM approach utilizes several two-dimensional sub strut-tie models that represent the compressive and tensile stress flows of each projected plane of the three-dimensional structural concrete in the selection of a three dimensional strut-tie model, evaluation of the effective strengths of the concrete struts, and verification of the geometric compatibility condition and bearing capacity of the critical nodal zones in the selected three-dimensional strut-tie model. The finite element analysis uses an 8-node brick element and the longitudinal prestressing force is considered as the equivalent nodal force. Analysis results show that the 2D SUB-3D STM approach and linear elastic finite element method can be effectively applied to the analysis and design of three-dimensional structural concrete including a prestressed concrete box girder anchorage zone.

  • PDF