• Title/Summary/Keyword: Bearing strength test

Search Result 470, Processing Time 0.025 seconds

Shear behavior of composite frame inner joints of SRRC column-steel beam subjected to cyclic loading

  • Ma, Hui;Li, Sanzhi;Li, Zhe;Liu, Yunhe;Dong, Jing;Zhang, Peng
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.495-508
    • /
    • 2018
  • In this paper, cyclic loading tests on composite frame inner joints of steel-reinforced recycled concrete (SRRC) column-steel beam were conducted. The main objective of the test was to obtain the shear behavior and analyze the shear strength of the joints. The main design parameters in the test were recycled coarse aggregate (RCA) replacement percentage and axial compression ratio. The failure process, failure modes, hysteresis curves and strain characteristics of the joints were obtained, and the influences of design parameters on the shear strength of the joints have been also analysed in detail. Results show that the failure modes of the joints area are typical shear failure. The shear bearing capacity of the joints maximally decreased by 10.07% with the increase in the RCA replacement percentage, whereas the shear bearing capacity of the joints maximally increased by 16.6% with the increase in the axial compression ratio. A specific strain analysis suggests that the shear bearing capacity of the joints was mainly provided by the three shear elements of the recycled aggregate concrete (RAC) diagonal compression strut, steel webs and stirrups of the joint area. According to the shear mechanism and test results, the calculation formulas of the shear bearing capacity of the three main shear elements were deduced separately. Thus, the calculation model of the shear bearing capacity of the composite joints considering the adverse effects of the RCA replacement percentage was established through a superposition method. The calculated values of shear strength based on the calculation model were in good agreement with the test values. It indicates that the calculation method in this study can reasonably predict the shear bearing capacity of the composite frame inner joints of SRRC column-steel beam.

Bearing Capacity Analysis of High Strength Steel Pipe Pile with an Extended Head (선단확장형 고강도강관 매입말뚝 지지력 분석)

  • Ko, Jun-Young;Jeong, Sang-Seom;Lee, Sung-June;Lee, Jin-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.559-568
    • /
    • 2010
  • Recently, because of mega foundations and grand bridges, the foundations require significant bearing capacity. In this study, bearing capacity of high strength steel pipe pile with an extended head (HSP) is calculated on the basis of domestic criteria and Japanese criteria. And bearing capacity of HSP is investigated based on 3 field tests. In comparison with the results of analysis and tests, it is shown that the field test results are bigger than analysis results. Therefore, it is proposed to estimate bearing capacity of HSP.

  • PDF

A Study on the Development of a Ultra-Strength Precast Concrete Bearing Concrete Bearing Plate (초고강도 ($\acute{f}_{C91}$= 950kg/$\textrm{cm}^2$) P.C Bearing Plate 개발에 관한 연구)

  • 소현창;정병욱;김재우;문성규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.643-648
    • /
    • 1997
  • P.C Bearing Plate method, corresponding to the existing steel plate build-up method, is developed by the very first in domestic and is applied to the foundation in the HYUNDAI building at Kang-Nam. P. C Bearing Plate produced in ourself P.C plant can stand against vertical load of 7,000ton obtaining allowable force of soil. It is possible to minmize cost expediting, do site assembling and omit unnecessary excavation work by plant prefabrication of foundation member. The purpose of this paper is to study the optimum mixing design of Ultra-high strength concrete ($\acute{f}_{C91}$= 950kg/$\textrm{cm}^2$), crack control through measuring the heat of hydration, mock up test for the optimum curing method. As mentioned above, developing the Ultra-high strength Precast Concrete Bearing Plate set up successfully in the site foundation work of the HYUNDAI Building at Kang-Nam.

  • PDF

Bearing Reinforcing Effect of Concrete Block with a Round End according to the Application of Aluminum Stiffener (알루미늄 보강재 적용에 따른 원형 단부 콘크리트 블록의 지압 보강 효과)

  • Seok Hyeon Jeon;Tae-Yun Kwon;Jin-Hee Ahn
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.38-46
    • /
    • 2023
  • In this study, a bearing test was performed and analytically evaluated to evaluate the bearing performance according to the application of the aluminum stiffener in round-end concrete. In the bearing strength test, the change in bearing performance due to the aluminum stiffener using the aluminum form for manufacturing concrete with round-end, and the steel anchor bolts for member movement and assembly was confirmed. The FE analysis model was identically configured to the experimental conditions, and the result was compared with the experiment. Also, the crack patterns and stress behavior were confirmed. In addition, the effect of strength change of the aluminum stiffener on the round-end concrete was also evaluated analytically. The bearing strength of the round-end concrete increased by about 20% due to the aluminum stiffener, and it was confirmed that the steel anchor bolt did not affect the bearing strength. The maximum load and crack patterns shown as a result of FE analysis were similar to those of the experiment. As a result of FE analysis according to the strength change of the aluminum stiffener, the maximum load change according to the increase and decrease of the strength of the aluminum stiffener by 10% and 20% was evaluated to have no significant effect at a maximum of about 4% compared to before the strength change.

Bearing Strength of Steel Coupling Beams-Wall Connections depending upon Joint Details (접합부 상세에 따른 철골 커플링 보-벽체 접합부의 지압강도)

  • Park Wan-Shin;Yun Hyun-Do;Han Byung-Chan;Hwang Sun-Kyung;Yang Il-Seong;Kim Sun-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.113-116
    • /
    • 2004
  • No specific guidelines are for computing the shear strength of steel coupling beam connections embedded in the reinforced concrete shear wall. In this paper, a theoretical study of the strength of hybrid coupled shear wall connections is achieved. The bearing stress at failure in the concrete below the steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the steel coupling beam section to the thickness of the hybrid coupled shear wall. To revise factor affecting shear transfer strength across connections between coupled shear walls and steel coupling beam, experimental studies are achieved. The main test variables were auxiliary details of stud bolts. In this studies, these proposed equations are shown to be in good agreement with the test results reported in the paper and with other test data in the literature.

  • PDF

Numerical analysis and eccentric bearing capacity of steel reinforced recycled concrete filled circular steel tube columns

  • Ma, Hui;Liu, Fangda;Wu, Yanan;Cui, Hang;Zhao, Yanli
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.163-181
    • /
    • 2022
  • To study the mechanical properties of steel reinforced recycled concrete (SRRC) filled circular steel tube columns under eccentric compression loads, this study presents a finite element model which can simulate the eccentrically compressed columns using ABAQUS software. The analytical model was established by selecting the reasonable nonlinear analysis theory and the constitutive relationship of materials in the columns. The influences of design parameters on the eccentric compressive performance of columns were also considered in detail, such as the diameter-thickness ratio of circular steel tube, replacement percentage of recycled coarse aggregate (RCA), slenderness ratio, eccentricity, recycled aggregate concrete (RAC) strength and steel strength and so on. The deformation diagram, stress nephogram and load-displacement curves of the eccentrically compressed columns were obtained and compared with the test results of specimens. The results show that although there is a certain error between the calculation results and the test results, the error is small, which shows the rationality on the numerical model of eccentrically compressed columns. The failure of the columns is mainly due to the symmetrical bending of the columns towards the middle compression zone, which is a typical compression bending failure. The eccentric bearing capacity and deformation capacity of columns increase with the increase of the strength of steel tube and profile steel respectively. Compared with profile steel, the strength of steel tube has a greater influence on the eccentric compressive performance of columns. Improving the strength of RAC is beneficial to the eccentric bearing capacity of columns. In addition, the eccentric bearing capacity and deformation capacity of columns decrease with the increase of replacement percentage of RCA. The section form of profile steel has little influence on the eccentric compression performance of columns. On this basis, the calculation formulas on the nominal eccentric bearing capacity of columns were also put forward and the results calculated by the proposed formulas are in good agreement with the test values.

The Steel Coupling Beam-Wall Connections Strength

  • Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.135-145
    • /
    • 2006
  • In high multistory reinforced concrete buildings, coupled shear walls can provide an efficient structural system to resist horizontal force due to wind and seismic effects. Coupled shear walls are usually built over the whole height of the building and re laid out either as a series of walls coupled by beams and/or slabs or a central core structure with openings to accommodate doors, elevators walls, windows and corridors. A number of recent studies have focused on examining the seismic response of concrete, steel, and composite coupling beams. However, since no specific equations are available for computing the bearing strength of steel coupling beam-wall connections, it is necessary to develop such strength equations. There were carried out analytical and experimental studies to develop the strength equations of steel coupling beam-connections. Experiments were conducted to determine the factors influencing the bearing strength of the steel coupling beam-wall connection. The results of the proposed equations were in good agreement with both test results and other test data from the literature. Finally, this paper provides background for design guidelines that include a design model to calculate the bearing strength of steel coupling beam-wall connections.

An Experimental Study on the Evaluation of Bearing Strength of the Vertical Joint in Precast Concrete Large Panel Structures (대형판 조립식 구조 수직접합부 지압강도 평가에 관한 연구)

  • Chung, Lan;Cho, Seung-Ho;Hwang, Min-Ha
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.181-189
    • /
    • 1996
  • It is well-known that the hearing strength in vertical joints of precast concrete large panel system is affected by grout compressive strength angle of shear key and bearing area. 21 vertical joint specimens were tested to investigate the effects of these parameters The analysis of test results shows that : 1. The higher be grout compressive strength, the higher will shear strength be. And the bearing strength does not so increase in proportion of bearing area. 2. The shear key with the angle of $20^{\circ}$shows the highest bearing strength among three angle variables of $20^{\circ}$, $25^{\circ}$, $30^{\circ}$.

Criterion of Ballast Aggregates for Paved Track (포장궤도 골재용 도상자갈의 입도기준)

  • Choi seung sic;Kim seoung hwan;Yun kyong-ku;Lee il hwa
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.615-620
    • /
    • 2005
  • The purpose of this study was to provide a criterion of ballast aggregate size distribution for paved track. The parameters considered in this study were different types of particle size distribution. Then the analysis for analyzing compressive and flexural strength, physical characteristics of aggregate, and the ballast box test were performed. In the test result of the physical characteristic performed by the ballast box test, the bearing capacity was measured lower than the expected value because of its boundary conditions. Among four types of ballast aggregate, type B was selected as one of best candidate distribution because of its bearing capacity, strength, development and economics.

  • PDF

Shear Behavior of Pyramidal Shear Connectors (피라미드형 전단연결재의 전단거동)

  • Lee, Kyeong-Dong;Han, Sang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.131-137
    • /
    • 2000
  • In order to evaluate the design shear strength of composite slabs with truss-shaped shear connectors(TSC), a series of push-out tests on several types of specimens was carried out. The test results for the two parameters of bearing area and solid angle of the connector were compared to obtain the design shear force of the truss-shaped connectors. The results obtained from this study are as follows: (1) The slip-coefficients of TSC ranges from 0.87 to 3.12(${\times}10^6kgf/cm$). (2) The slip stiffness and the shear strength of TSC with $60.6cm^2$ bearing area are greater than those with $14.6cm^2$. (3) For estimating the allowable shear force of TSC, a design equation that is based on the bearing strength of the connector is suggested. (4) The mean safety factors of the critical force and the ultimate force are 2.38 and 4.62. respectively.

  • PDF