• Title/Summary/Keyword: Bearing stiffness

Search Result 917, Processing Time 0.031 seconds

The Effects of the Breadth of Foundation and Rock Layer on the Installation Method of Micro-piles (기초 폭 및 암반층의 영향을 고려한 마이크로파일 설치방안에 관한 연구)

  • Hwang, Tae-Hyun;Kim, Ji-Ho;Kwon, Oh-Yeob
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.29-38
    • /
    • 2010
  • Micro-piles have been used to increase the bearing capacity or to restrain settlement of existing shallow foundation. Recently, micro-piles are used to support the shallow foundation, to stabilize the slope and to resist the sliding of retaining wall. Using the micro-piles in geotechnical engineering, some investigators have studied the effective installing method by model test or field test. But most of previous studies are chiefly focused on the micro-piles in sand or clay layer. If a rock layer exists in soil, the installing length of micro-piles may be determined by the depth of rock layer. In this case, the stiffness of pile may be changed by the installing length of pile, and so the installing method has to be altered by the changed stiffness of pile. Model tests have been conducted to study the installation method of micro-pile in soil with rock layer. As a result, when the ratio of length of pile is below 50 ($L/d{\leq}50$), installing of micro-piles in vertical position is effective regardless of the depth of rock layer. If the depth of rock layer is deeper than soil failure zone and the ratio of the length of pile exceeds 50 (L/d>50), installing of the micro-piles in sloped position is effective.

Interfacial mechanical behaviors of RC beams strengthened with FRP

  • Deng, Jiangdong;Liu, Airong;Huang, Peiyan;Zheng, Xiaohong
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.577-596
    • /
    • 2016
  • FRP-concrete interfacial mechanical properties determine the strengthening effect of RC beams strengthened with FRP. In this paper, the model experiments were carried out with eight specimens to study the failure modes and the strengthening effect of RC beams strengthened with FRP. Then a theoretical model based on interfacial performances was proposed and interfacial mechanical behaviors were studied. Finite element analysis confirmed the theoretical results. The results showed that RC beams strengthened with FRP had three loading stages and that the FRP strengthening effects were mainly exerted in the Stage III after the yielding of steel bars, including the improvement of the bearing capacity, the decreased ultimate deformation due to the sudden failure of FRP and the improvement of stiffness in this stage. The mechanical formulae of the interfacial shear stress and FRP stress were established and the key influence factors included FRP length, interfacial bond-slip parameter, FRP thickness, etc. According to the theoretical analysis and experimental data, the calculation methods of interfacial shear stress at FRP end and FRP strain at midspan were proposed. When FRP bonding length was shorter, interfacial shear stress at FRP end was larger that led to concrete cover peeling failure. When FRP was longer, FRP reached the ultimate strain and the fracture failure of FRP occurred. The theoretical results were well consistent with the experimental data.

Fatigue Safe Life Analysis of Helicopter Rotor Bearingless Hub System Composite Components (헬리콥터 로터 무베어링 허브 시스템 복합재 구성품 피로 안전수명 해석)

  • Kim, Taejoo;Kee, Youngjoong;Kim, Deog-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.10-19
    • /
    • 2014
  • We designed bearingless rotor hub system which replace mechanical hinge/bearing with composite beam component and conducted fatigue analysis for flexbeam and torque tube. Extension/bending/torsional stiffness was calculated from 2D section analysis using VABS and 2D section structure analysis was applied for strain calculation. S-N curve of each composite material was generated using Wohler equation and fatigue analysis was conducted on weakness section which was decided from static structure analysis. CAMRAD II was used for load analysis and load analysis result was applied HELIX/FELIX standard load spectrum to generate bearingless rotor system load spectrum which was used fatigue safe life analysis.

Pullout Characteristics of Waste Fishing Net Reinforced Bottom Ash using Pullout Test (인발시험에 의한 저회에 보강된 폐어망의 인발특성 연구)

  • Kwon, Soon-Jang;Kim, Yun-Tae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.57-66
    • /
    • 2013
  • In this study, pullout tests were carried out to evaluate pullout characteristics of waste fishing net (WFN), which added into bottom ash for recycling both bottom ash and WFN. Three different mesh size of WFN (WFN20:$20mm{\times}20mm$, WFN30:$30mm{\times}30mm$, WFN40:$40mm{\times}40mm$) and geogrid were added as a reinforcement. Pullout characteristics of waste fishing net were compared with those of the geogrid. Pullout test results showed that pullout strength and stiffness of WFN20 are a little less than those of geogrid. However, the pullout friction angle of WFN20 is similar to that of geogrid due to bearing resistance induced from transverse rib because thickness of WFN20 is greater than geogrid. Pullout test results also indicated that distribution of residual strain along reinforcement after test depends on overburden stress. Residual strain at the tip of reinforcement increased with an increase in overburden stress due to concentration of pullout force on the tip of reinforcement.

Development of Permanent Deformation Prediction Model for Trackbed Foundation Materials based on Shear Strength Parameters (강화노반 쇄석재료의 전단강도특성을 고려한 영구변형예측모델 개발)

  • Lim, Yujin;Hwang, Jungkyu;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.623-630
    • /
    • 2012
  • Formation used as trackbed foundation for providing vertical bearing capacity onto rail foundation are composed of crushed stones usually with certain type of grain size distribution. Permanent deformation in trackbed foundation can be generated by increasing number of load repetition due to train traffic increases, causing track irregularity. In this study, a specially prepared trackbed foundation materials (M-40) used in Korea has been tested using a large repetitive triaxial compression apparatus in order to understand resilient and permanent deformation characteristics of the material. From these test results, resilient and permanent deformation characteristic are analyzed so that a permanent deformation model is developed which can consider number of load repetition N, confining stress (${\sigma}_3$), shear stress ratio(${\tau}/{\tau}_f$) and stiffness of the material.

Pier Stiffness and Bridge Collapse Mechanism (교각 강성과 교량의 붕괴기구)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.187-192
    • /
    • 2016
  • While structures are designed within elastic range by other designs, plastic behavior of structures should be verified and controlled in order to prevent structural collapse by the earthquake resistant design. No Collapse Requirement for typical bridges is to avoid falling down of superstructure by way of plastic behavior of certain structural elements and to operate emergency vehicles after earthquake. Such plastic behavior is restricted to connections or pier columns and appropriate measures are required for each case. Earthquake Resistant Design part of Roadway Bridge Design Code provides design processes for Ductile Collapse Mechanism by forming plastic hinges at pier columns. Also for bridges with reinforced concrete piers ductility-based design processes are provided as an appendix constructing Brittle Collapse Mechanism with connection yielding. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected and No Collapse Design procedure considering both Ductile and Brittle Collapse Mechanism is proposed together with revisions required for the Earthquake Resistant Design part.

Analysis of ground reinforcement effect using fracturing grouting (침투 및 할렬주입에 의한 지반보강 효과에 관한 연구)

  • Lee, J.S.;Lee, I.M.;Chung, H.S.;Lee, D.S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.349-360
    • /
    • 2003
  • A practical modeling approach has been proposed in this study to better understand the behavior of penetration grouting which is normally applied to the jointed rock masses to increase the bearing capacity and to reduce the ground water flow into the tunnel. Based on Bingham model together with a steady-state flow of the grout, penetration model is simulated in the commercial package called UDEC and, injection pressure as well as joint thickness are found to be the main parameters to determine the range of grout spread. Another numerical model on fracturing grouting is also suggested and, in this case, the tensile strength as well as cohesion of the rock masses are proven to be the major factors to decide the fracturing mechanism of the rock masses. The reinforcement effect of the grout-reinforced rock masses is calculated from the suggested algorithm on orthotropic material model and it is found that the directional stiffness of reinforced rock masses is increased up to 3 to 4 times compared with original jointed rock masses. Future work will be concentrated on the water control around the tunnel by the grout injection and a model test will also be performed to verify the suggested methods developed in this study.

  • PDF

Field Measurement and Modal Identification of Various Structures for Structural Health Monitoring

  • Yoshida, Akihiko;Tamura, Yukio
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.9-25
    • /
    • 2015
  • Field measurements of various structures have been conducted for many purposes. Measurement data obtained by field measurement is very useful to determine vibration characteristics including dynamic characteristics such as the damping ratio, natural frequency, and mode shape of a structure. In addition, results of field measurements and modal identification can be used for modal updating of FEM analysis, for checking the efficiency of damping devices and so on. This paper shows some examples of field measurements and modal identification for structural health monitoring. As the first example, changes of dynamic characteristics of a 15-story office building in four construction stages from the foundation stage to completion are described. The dynamic characteristics of each construction stage were modeled as accurately as possible by FEM, and the stiffness of the main structural frame was evaluated and the FEM results were compared with measurements performed on non-load-bearing elements. Simple FEM modal updating was also applied. As the next example, full-scale measurements were also carried out on a high-rise chimney, and the efficiency of the tuned mass damper was investigated by using two kinds of modal identification techniques. Good correspondence was shown with vibration characteristics obtained by the 2DOF-RD technique and the Frequency Domain Decomposition method. As the last example, the wind-induced response using RTK-GPS and the feasibility of hybrid use of FEM analysis and RTK-GPS for confirming the integrity of structures during strong typhoons were shown. The member stresses obtained by hybrid use of FEM analysis and RTK-GPS were close to the member stresses measured by strain gauges.

Behavior of Precast Concrete Shear Walls with C-Type Connections (C형 접합부를 이용한 프리캐스트 콘크리트 전단벽의 거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.461-472
    • /
    • 2010
  • This paper investigates the behavior of precast concrete (PC) shear walls with a new vertical connections for a fast remodeling construction. The C-type vertical connections for the PC wall systems are proposed for transfer of bending moment between top and bottom walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing action. The proposed vertical connections allows easy fabrication thanks to slots at the edges of wall in opposite directions. The plane PC wall systems subject to lateral load are compared with ordinary wall systems by investigating the effects of connection on the stiffness, strength, ductility, and failure modes of whole systems. The load-displacement relationship and influence of premature failure of connections are examined. The experimental test showed that the longitudinal reinforcing steel bars placed at the edges of walls yielded first and the ultimate deformation were terminated due to premature failure of connections. The diagonal reinforcements for efficient shear transfer in the walls were not effective. The strength and deformation obtained through the section analysis were generally in agreement with the experimental data, and indicated that. Gap opening contributed to the deformation behavior more than any other factors.

Fracture Behavior of Dowel Joint of Concrete Slab Track (콘크리트궤도 슬래브의 다웰 연결부 파괴 거동)

  • Kwon, Kusung;Jang, Seung Yup;Chung, Wonseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2125-2133
    • /
    • 2013
  • Recently, an interest on joint behavior between adjacent concrete slab tracks has increasing due to large application of such track system. Dowel bars are widely used to improve load transfer capacity across the joints. Dowel bars reduce the deflections and stresses by transferring the load between the slabs. This study proposes the lumped shear spring model to efficiently model dowel joints of adjacent slabs. This model includes bearing stiffness between dowel bar and concrete as well as dowel gap. Strength of the proposed spring model is evaluated based on Concrete Capacity Design method under the assumption of shear failure mode in the joints. Experiments are also performed up to failure to evaluate the accuracy of the proposed model. It has been observed that the proposed model is able to predict initial nonlinearity due to dowel gap, and capture material nonlinearity of the test slabs. Thus, it is recommended that the proposed model can be effectively applied to the dowel joints of concrete slab track.