• Title/Summary/Keyword: Bearing span

Search Result 225, Processing Time 0.027 seconds

Comparison of the dynamic responses of $G\ddot{u}lburnu$ Highway Bridge using single and triple concave friction pendulums

  • Yurdakul, Muhammet;Ates, Sevket;Altunisik, Ahmet Can
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.511-525
    • /
    • 2014
  • The main object of this study is to determine and compare the structural behavior of base isolated long span highway bridge, $G\ddot{u}lburnu$ Highway Bridge, using single concave friction pendulum (SCFP) and triple concave friction pendulum (TCFP). The bridge is seismically isolated in the design phase to increase the main period and reduce the horizontal forces with moments using SCFP bearings. In the content of the paper, firstly three dimensional finite element model (FEM) of the bridge is constituted using project drawings by SAP2000 software. The dynamic characteristics such as natural frequencies and periods, and the structural response such as displacements, axial forces, shear forces and torsional moments are attained from the modal and dynamic analyses. After, FEM of the bridge is updated using TCFP and the analyses are performed. At the end of the study, the dynamic characteristics and internal forces are compared with each other to extract the TCFP effect. To emphasize the base isolation effect, the non-isolated structural analysis results are added to graphics. The predominant frequencies of bridge non-isolated, isolated with SCFP and isolated with TCFP conditions decreased from 0.849Hz to 0.497Hz and 0.338Hz, respectively. The maximum vertical displacements are obtained as 57cm, 54cm and 44cm for non-isolated, isolated with SCFP and isolated with TCFP conditions, respectively. The maximum vertical displacement reduction between isolated with TCFP bearing and isolated with SCFP bearing bridge is %23. Maximum axial forces are obtained as 60619kN, 18728kN and 7382kN, maximum shear forces are obtained as 23408kN, 17913kN and 16249kN and maximum torsional moments are obtained as 24020kNm, 7619kNm and 3840kNm for non-isolated, isolated with SCFP and isolated with TCFP conditions, respectively.

Static and Dynamic Analysis and Optimization Design of 40,000-rpm High-Speed Spindle for Machine Tools (공작기계용 40,000rpm 고속주축의 정·동적 해석과 최적설계에 관한 연구)

  • Kim, Dong Hyeon;Lee, Choon Man;Choi, Hyun Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.105-111
    • /
    • 2013
  • The spindle is the main component in machine tools. The static and dynamic characteristics of the spindle directly affect the machining accuracy of workpieces. The characteristics of the spindle depend on the shaft size, bearing span, built-in motor location, and so on. Therefore, the appropriate selection of these parameters is important to improve the spindle characteristics. This paper presents the analysis of the static and dynamic characteristics and optimization design of a 40,000-rpm high-speed spindle. Statistical analysis for optimization and finite element analysis were performed. This study uses the response surface method to optimize the objective function and design factors. The targets are the natural frequency and displacement. The design factors are the shaft length, shaft diameter, bearing span, and motor location. The optimized design provides better results than the initial model, and these results are expected to improve the static and dynamic characteristics of the spindle.

Analysis of stability control and the adapted ways for building tunnel anchors and a down-passing tunnel

  • Xiaohan Zhou;Xinrong Liu;Yu Xiao;Ninghui Liang;Yangyang Yang;Yafeng Han;Zhongping Yang
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.395-409
    • /
    • 2023
  • Long-span suspension bridges have tunnel anchor systems to maintain stable cables. More investigations are required to determine how closely tunnel excavation beneath the tunnel anchor impacts the stability of the tunnel anchor. In order to investigate the impact of the adjacent tunnel's excavation on the stability of the tunnel anchor, a large-span suspension bridge tunnel anchor is utilised as an example in a three-dimensional numerical simulation approach. In order to explore the deformation control mechanism, orthogonal tests are employed to pinpoint the major impacting elements. The construction of an advanced pipe shed, strengthening the primary support. Moreover, according to the findings the grouting reinforcement of the surrounding rock, have a significant control effect on the settlement of the tunnel vault and plug body. However, reducing the lag distance of the secondary lining does not have such big influence. The greatest way to control tunnel vault settling is to use the grout reinforcement, which increases the bearing capacity and strength of the surrounding rock. This greatly minimizes the size of the tunnel excavation disturbance area. Advanced pipe shed can not only increase the surrounding rock's bearing capacity at the pipe shed, but can also prevent the tunnel vault from connecting with the disturbance area at the bottom of the anchorage tunnel, reduce the range of shear failure area outside the anchorage tunnel, and have the best impact on the plug body's settlement control.

An Experimental Study on the Shear Behavior of Reinforced Concrete Deep Beams Subject to Concentrated Loads (집중하중을 받는 철근콘크리트 깊은 보의 전단거동에 관한 실험적 연구)

  • Lee, Jin-Seop;Kim, Sang-Sik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.191-200
    • /
    • 1999
  • The shear behavior of simply supported reinforced concrete deep beams subject to concentrated loads has been scrutinized experimentally to verify the influence of the structural parameters such as concrete strength, shear span-depth ratio, and web reinforcements. A total of 42 reinforced concrete deep beams with compressive strengths of 250 kg/$cm^2$ and 500 kg/$cm^2$ has been tested at the laboratory under one or two-point top loading. The shear span-depth ratio have been taken as three types of 0.4, 0.8 and 1.2, and the horizontal and vertical shear reinforcements ratio, ranging from 0.0 to 0.57 percent respectively. In the tests, the effects of the shear span-depth ratio, concrete strength and web reinforcements on the shear strength and crack initiation and propagation have been carefully checked and analyzed. From the tests, it has been observed that the failures of all specimens were due to shear and the shear behaviors of specimens were greatly affected by inclined cracks from the load application points to the supports in shear span. The load bearing capacities have changed significantly depending on the shear span ratio, and the efficiency of horizontal shear reinforcements were increased as the shear span-depth ratio decreased. The test results have been analyzed and compared with the formulas proposed by previous researchers and the design equation from the code. While the shear strengths obtained from the tests showed around 1.4 and 1.9 times higher than the values calculated by CIRIA guide and the domestic code, they were closely coincident with the formulas given by de Paiva's equation.

Dynamic performance of girder bridges with explosion-proof and aseismic system

  • Wang, Jingyu;Yuan, Wancheng;Wu, Xun;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.419-426
    • /
    • 2017
  • Recently, the transportation of dangerous explosive goods is increasing, which makes vehicle blasting accidents a potential threat for the safety of bridge structures. In addition, blasting accidents happen more easily when earthquake occurs. Excessive dynamic response of bridges under extreme loads may cause local member damage, serviceability issues, or even failure of the whole structure. In this paper, a new explosion-proof and aseismic system is proposed including cable support damping bearing and steel-fiber reinforced concrete based on the existing researches. Then, considering one 40m-span simply supported concrete T-bridge as the prototype, through scale model test and numerical simulation, the dynamic response of the bridge under three conditions including only earthquake, only blast load and the combination of the two extreme loads is obtained and the applicability of this explosion-proof and aseismic system is explored. Results of the study show that this explosion-proof and aseismic system has good adaptability to seism and blast load at different level. The reducing vibration isolation efficiency of cable support damping bearing is pretty high. Increasing cables does not affect the good shock-absorption performance of the original bearing. The new system is good at shock absorption and displacement limitation. It works well in reducing the vertical dynamic response of beam body, and could limit the relative displacement between main girder and capping beam in different orientation so as to solve the problem of beam falling. The study also shows that the enhancement of steel fibers in concrete could significantly improve the blast resistance of main beam. Results of this paper can be used in the process of antiknock design, and provide strong theoretical basis for comprehensive protection and support of girder bridges.

A Numerical Analysis of Tolerable Settlement for Bridges (수치해석에 의한 중소형교량 교량기초의 허용침하량 평가)

  • Jung, Gyung-Ja;Jeon, Kyung-Soo;Cho, Jun-Sang;Lee, Sang-Heon;Byun, Hyung-Kyoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.569-579
    • /
    • 2010
  • Tolerable vertical displacement of a bridge is dependent on the superstructure-type, slope, span, and etc.. In the design stage, however, resultant force of cross section is examined supposed that the settlement is 1 cm at the bearing point. And the 1cm is sometimes considered as if the criteria of allowable foundation settlement. It is needed to establish the criteria of the tolerable displacement for the small and middle bridges which are widely used in domestic area. The design data of domestic bridges including expressway bridges were collected and analyzed according to the types of superstructures and foundations. And numerical simulations were conducted for RC rigid frame bridges, PSC girder bridges, IPC girder bridges, PSC box girder bridges, and steel box girder bridges to examine the tolerable displacements.

  • PDF

Seismic Protection for Multiple Span Continuous Steel Bridges using Shape Memory Alloy-Restrainer-Dampers (형상기억합금을 이용한 다경간 연속 강교량의 지진보호)

  • Park, Eunsoo;Kim, Haksoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.77-86
    • /
    • 2004
  • This paper introduces a shape memory alloy-restrainer-damper(SMA-RD) to protect multiple span continuous steel bridges from seismic loads. The type of bridges has only one fixed bearing condition on a pier and expansion bearings are located on the other piers and abutments. Due to this state and a big mass of the deck, these bridges are usually very vulnerable to column's damage on which fixed bearings are located and large deformation of abutments in passive action. Two types of SMA-RDs are developed, and their effect is inspected for protecting the bridges through seismic analyses. Conventional steel restrainer cables are also used to reduce the seismic vulnerability of the bridge and the results are compared to those of the SMA-RDs.

Earthquake Response Analysis for Seismic Isolation System of Single Layer Lattice Domes With 300m Span (300m 단층 래티스 돔의 면진 장치에 대한 지진 반응 해석)

  • Park, Kang-Geun;Chung, Mi-Ja;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.105-116
    • /
    • 2018
  • The objective of this study is to investigate the response reducing effect of a seismic isolation system installed between 300m dome and supports under both horizontal and vertical seismic ground motion. The time history analysis is performed to investigate the dynamic behavior of single layer lattice domes with and without a lead rubber bearing seismic isolation system. In order to ensure the seismic performance of lattice domes against strong earthquakes, it is important to investigate the mechanical characteristics of dynamic response. Horizontal and vertical seismic ground motions cause a large asymmetric vertical response of large span domes. One of the most effective methods to reduce the dynamic response is to install a seismic isolation system for observing seismic ground motion at the base of the dome. This paper discusses the dynamic response characteristics of 300m single layer lattice domes supported on a lead rubber seismic isolation device under horizontal and vertical seismic ground motions.

Damage and stiffness research on steel shape steel fiber reinforced concrete composite beams

  • Xu, Chao;Wu, Kai;Cao, Ping zhou;Lin, Shi qi;Xu, Teng fei
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.513-525
    • /
    • 2019
  • In this work, an experimental research has been performed on Steel Fiber-Steel Reinforced Concrete (SFSRC)specimens subjected to four-point bending tests to evaluate the feasibility of mutual replacement of steel fibers and conventional reinforcement through studying failure modes, load-deflection curves, stiffness of characteristic points, stiffness degradation curves and damage analysis. The variables considered in this experiment included steel fiber volume percentage with and without conventional reinforcements (stirrups or steel fibers) with shear span depth ratios of S/D=2.5 and 3.5. Experimental results revealed that increasing the volume percentage of steel fiber decreased the creation and propagation of shear and bond cracks, just like shortening the stirrups spacing. Higher crack resistance and suturing ability of steel fiber can improve the stability of its bearing capacity. Both steel fibers and stirrups improved the stiffness and damage resistance of specimens where stirrups played an essential role and therefore, the influence of steel fibers was greatly weakened. Increasing S/D ratio also weakened the effect of steel fibers. An equation was derived to calculate the bending stiffness of SFSRC specimens, which was used to determine mid span deflection; the accuracy of the proposed equation was proved by comparing predicted and experimental results.

The Seismic Response According to Rise-Span Ratio of the Arch Structure With Seismic Isolation (라이즈-스팬비에 따른 면진 아치구조물의 지진응답 분석)

  • Kim, Su-Geun;Kim, Yu-Seong;Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.55-65
    • /
    • 2018
  • In order to reduce the seismic response of the spatial structure, a seismic isolation system with sufficient flexibility is used. The natural period of structure with seismic isolation system got be long to avoid prominent period. In this study, The seismic response of the truss-arch structure, which is modeled in three types according to the rise-span ratio is analyzed on El-centro, Northridge and Artificial Earthquake and compared with the seismic response of the truss-arch structure with lead rubber bearing(LRB). When seismic load is applied to the truss arch with isolation system, the horizontal acceleration response of the truss arch is reduced and vertical seismic response is also reduced. The application of the seismic isolation system is effective in controlling the seismic response.