• Title/Summary/Keyword: Bearing failure

Search Result 786, Processing Time 0.026 seconds

Damages of the Sliding Surface in Fluid Film Bearings (유체 윤활 미끄럼 베어링의 표면 손상)

  • 하현천;방경보;박영철;김일봉
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.196-202
    • /
    • 1998
  • Because the journal and bearing surface are fully separated by the oil film during the normal operation, fluid film bearings operating in the hydrodynamic lubrication region are expected to have an infinite life. However, there are many parameters that lead to interfere with the normal operation of the bearing and lead to its failure. In this paper, both the causes and countermeasures of the bearing failure are described. Also, the characteristics of wiped bearing surface are investigated through mechanical and chemical test.

  • PDF

The ultimate bearing capacity of rectangular tunnel lining assembled by composite segments: An experimental investigation

  • Liu, Xian;Hu, Xinyu;Guan, Linxing;Sun, Wei
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.481-497
    • /
    • 2017
  • In this paper, full-scale loading tests were performed on a rectangular segmental tunnel lining, which was assembled by steel composite segments, to investigate its load-bearing structural behavior and failure mechanism. The tests were also used to confirm the composite effect by adding concrete inside to satisfy the required performance under severe loading conditions. The design of the tested rectangular segmental lining and the loading scheme are also described to better understand the bearing capacity of this composite lining structure. It is found that the structural ultimate bearing capacity is governed by the bond capacity between steel plates and the tunnel segment. The failure of the strengthened lining is the consequence of local failure of the bond at waist joints. This led to a fast decrease of the overall stiffness and eventually a loss of the structural integrity.

Bearing Characteristics of Micropile-raft by Failure Mode of Soil (지반파괴거동에 따른 마이크로파일-기초의 지지특성)

  • Hwang, Tae-Hyun;Shin, Jong-Ho;Huh, In-Goo;Kwon, Oh-Yeob
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.13-25
    • /
    • 2015
  • With the increasing usages of micropile, several researchers have been studying the bearing characteristics of micropile or micropile-raft system. But most cases of research were focused on the bearing capacity of micropile-raft system on sand layer. And it was not considered that the bearing capacity of micropile-raft system was affected by the failure mode of soil and pile installation conditions. Thereby this study conducted the numerical analysis to estimate the bearing capacity of micropile-raft system on sand or silt layer with different shear failure mode. It was found that the bearing capacity of micropile-raft system installed in positive or negative angle was larger than that of the system installed in vertical angle, in the case of the sand layer undergoing the general shear failure. In the case of silt layer undergoing the punching shear failure, the bearing capacity of micropile-raft system installed only in negative angle was larger than that installed in vertical or positive angle. And the bearing capacity of foundation system in positive angle was similar to the vertical micropile-raft system.

Bearing Damage Analysis of Bridges Considering the Probabilistic Characteristics of Earthquake and Structural Properties (지진하중 및 교량구조물의 확률적 특성을 고려한 받침손상위험도 분석)

  • 김상효;마호성;이상우;김철환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.346-353
    • /
    • 2002
  • The risk of bearing failure is evaluated through the seismic response analysis of a bridge considering the probabilistic characteristics of structural properties such as the mass of superstructure, the stiffness of pier, and the translational and rotational stiffness of the foundation as well as seismic loadings during the bridge service lift. The effect of pounding between adjacent vibration units on the risk of bearing failure is also investigated. The probabilistic characteristics of structural properties are obtained by the Monte Carlo simulations based on the probabilistic characteristics of basic random variables included in the structural properties. From the simulation results, the failure probability of fixed bearings attached on the abutment is found to be much higher than those placed on the piers. It is also found that the pounding effect significantly increases the failure probability of bearings. In the simply supported bridges, the risk of bearing failure increases as the number of bridge spans increase. Therefore, the failure probability of fixed bearing due to the effects of pounding phenomena and the number of bridge spans should be considered in the seismic desist of bearings.

  • PDF

A Study on the Bearing Capacity of Rammed Aggregate Pier as the Intermediate Foundations (중간기초개념으로서 짧은 쇄석다짐말뚝의 지지력 특성에 관한 연구)

  • CHUN BYUNG-SIK;KIM KYUNG-MIN;KIM JUN-HO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.247-252
    • /
    • 2004
  • To secure stability and availability of Rammed Aggregate Pier method as the foundation of a structure, the bearing capacity and failure behavior characteristics was studied through soil laboratory tests in a model ground. In this study, soil laboratory tests use carried out to find the applicability of RAP method as the foundation of a structure. And bearing capacity and the failure mechanism of RAP method was studied according to relative density($60\%,\;70\%,\;90\%$), diameter(45mm, 60mm, 70mm) of each pier ana depth(5cm, l0cm, 15cm, 20cm, 25cm, 30cm). Earth pressure cell is set up approach RAP and 1.0D space at RAP center. Bearing acpacity and the failure mechanism of RAP is investigated by load test As a result, bulging failure was happened in $5\~10cm\;(1.0D\~2.00)$ depth which the maximum lateral earth pressure is acting. Especially, diameter changing of RAP are in inverse proportion to the relative density and the lateral stress is very much influenced by the lateral earth pressure in every layer and tends to decrease according to depth.

  • PDF

Monitoring of Lubrication Conditions in Journal Bearing by Acoustic Emission (AE를 이용한 저어널 베어링에서의 윤활유 이물질 혼입의 영향 감시)

  • 윤동진;권요양;정민화;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.12a
    • /
    • pp.77-84
    • /
    • 1993
  • Systems with journal bearings generally operate in large scale and under severe loading conditions such as steam generator turbines and internal combustion engines, in contrast to the machineries using rolling element bearings. Failure of the bearings in these machineries can result in the system breakdown. To avoid the time consuming repair and considerable economic loss, the detection of incipient failure in journal bearings becomes very important. In this experimental approach, acoustic emission monitoring is employed to the detection of incipient failure caused by intervention of foreign particles most probable in the journal bearing systems. It has been known that the intervention of foreign materials, insufficient lubrication and misassembly etc. are principal factors to cause bearing failure and distress. The experiment was conducted under such designed conditions as inserting alumina particles to the lubrication layer in the simulated journal bearing system. The results showed that acoustic emission could be an effective tool to detect the incipient failure in journal bearings.

  • PDF

End Bearing Capacity of a Pile in Cohesionless Soils (사질토에 있어서 말뚝의 선단부 지지력)

  • 이명환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1988.06c
    • /
    • pp.71-123
    • /
    • 1988
  • The aim of this paper is to examine the end bearing capacity of a pile in cohesionless soils. The ode of failure of soil due to pile installation is assumed from experimental observation of actual soil deformation. A new solution is proposed complying with the assumed mode of failure by employing the theory of cavity expansion. The effect of curvature of failure envelope is studied in relation to tile proposed solution. The influence of a curved failure envelope becomes larger with increasing degree of curvature and the level of confining stress. This effect in some cases or reduce the end bearing capacity by tore the 80 percent compared with that given by a straight failure envelope. For practical application of tile proposed solution, the method of determining the average volume change in the plastic zone is re-evaluated. The proposed solution is confirmed by comparing the theoretical values with experimental results obtained from model pile tests in a calibration chamber. The comparison shows that the proposed solution provides a reasonable prediction of end bearing capacity for both weak and strong grained soils.

  • PDF

Analysis for Prevention of Spragging in the Turbine Bearings (Spragging 에 의한 터빈 베어링의 손상 및 방지 대책)

  • 하현천;양승헌
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.174-178
    • /
    • 1999
  • This paper describes an investigation on bearing failure due to spragging that has been continuously occurred in turbine hearings. The spragging is defined as the damage found on the leading edge of unloaded pads in the tilting pad journal bearing, In general, the damage mechanism by spragging is classified into fatifgue failure, The principle cause of spragging could be thought as the self-excited vibration by the absence of a stable static equilibrium position of upper pads with no preload. Because of serious consequences of system breakdowns due to bearing failures, determination ar the causes of failure and effective method for countermeasures are very important. This paper describes both the causes of spragging and countermeasures for prevention of such failure, which are taken place in the electric power plants.

  • PDF

A Study on the Life Characteristic of an Automotive Water-pump Bearing Using the Accelerated Test Method (가속시험법을 활용한 자동차용 워터펌프 베어링의 수명특성에 관한 연구)

  • Yang, Hui Sun;Shin, Jung Hun;Park, Jong Won;Sung, Baek Ju
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.35-41
    • /
    • 2015
  • A water-pump located in the cooling area of a car circulates cooling water. A particular bearing element, known as a water-pump bearing, installed in the rotating part carries the entire load. The failure of this water-pump bearing has a direct impact on the failure of the automobile engine, and so securing its reliability is crucial. Several researchers have examined the design principles of the water-pump bearing, but there are no reports on the life characteristic of the bearing yet. Herein, we report the construction of test equipment to reproduce the spalling of the roller contact, which is the main failure mode of the chosen water-pump bearing. We chose the radial load as an accelerated stress factor and validated the failure mode by monitoring the surface defects. We conducted the accelerated life test after determining the accelerated stress level through a combination of finite element analysis and a preliminary test. In the life tests, we used an accelerometer to perform failure diagnosis. In the last stage of this study, we present a statistical reliability analysis. Thus, we fully estimated the shape parameter of the water-pump bearing, accelerating level on the load , and the lifetime (MTTF and B10 life) under real use conditions, and finally proposed an interval estimation value considering the uncertainty of the estimated value.

Stator Current Processing-Based Technique for Bearing Damage Detection in Induction Motors

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1439-1444
    • /
    • 2005
  • Induction motors are the most commonly used electrical drives because they are rugged, mechanically simple, adaptable to widely different operating conditions, and simple to control. The most common faults in squirrel-cage induction motors are bearing, stator and rotor faults. Surveys conducted by the IEEE and EPRI show that the most common fault in induction motor is bearing failure (${\sim}$40% of failure). Thence, this paper addresses experimental results for diagnosing faults with different rolling element bearing damage via motor current spectral analysis. Rolling element bearings generally consist of two rings, an inner and outer, between which a set of balls or rollers rotate in raceways. We set the experimental test bed to detect the rolling-element bearing misalignment of 3 type induction motors with normal condition bearing system, shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. This paper takes the initial step of investigating the efficacy of current monitoring for bearing fault detection by incipient bearing failure. The failure modes are reviewed and the characteristics of bearing frequency associated with the physical construction of the bearings are defined. The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT, Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. The test results clearly illustrate that the stator signature can be used to identify the presence of a bearing fault.

  • PDF