• 제목/요약/키워드: Bearing capacity increase ratio

검색결과 128건 처리시간 0.022초

Experimental research on vertical mechanical performance of embedded through-penetrating steel-concrete composite joint in high-temperature gas-cooled reactor pebble-bed module

  • Zhang, Peiyao;Guo, Quanquan;Pang, Sen;Sun, Yunlun;Chen, Yan
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.357-373
    • /
    • 2022
  • The high-temperature gas-cooled reactor pebble-bed module project is the first commercial Generation-IV NPP(Nuclear Power Plant) in China. A new joint is used for the vertical support of RPV(Reactor Pressure Vessel). The steel corbel is integrally embedded into the reactor-cabin wall through eight asymmetrically arranged pre-stressed high-strength bolts, achieving the different path transmission of shear force and moment. The vertical monotonic loading test of two specimens is conducted. The results show that the failure mode of the joint is bolt fracture. There is no prominent yield stage in the whole loading process. The stress of bolts is linearly distributed along the height of corbel at initial loading. As the load increases, the height of neutral axis of bolts gradually decreases. The upper and lower edges of the wall opening contact the corbel plate to restrict the rotation of the corbel. During the loading, the pre-stress of some bolts decreases. The increase of the pre-stress strength ratio of bolts has no noticeable effect on the structure stiffness, but it reduces the ultimate bearing capacity of the joint. A simplified calculation model for the elastic stage of the joint is established, and the estimation results are in good agreement with the experimental results.

이산화탄소의 탄산화 반응을 이용한 되메움재용 순환골재의 품질 개량: 5kg급 프로토타입 반응조 개발 (Quality Enhancement of Recycled Concrete Aggregates for Backfill Materials by CO2 Carbonation: Development of a 5-kg-scale Prototype Reactor)

  • 김진우;전민경;권태혁;김남룡
    • 한국지반공학회논문집
    • /
    • 제40권1호
    • /
    • pp.29-37
    • /
    • 2024
  • 본 연구에서는 이산화탄소 처리를 통한 순환골재의 지반공학적 성능 개량을 평가하기 위하여 5kg급 프로토타입 반응조를 제작하였다. 제작된 반응조를 이용하여 이산화탄소 처리한 순환골재와 미처리 순환골재의 골재 파쇄값과 노상토지지력비를 측정하였다. 이산화탄소 처리를 통해 골재 파쇄값은 35.6%에서 33.2%로 2.4% 감소하고 노상토지 지력비는 97.5%에서 102.4%로 4.9% 증가하는 것이 관찰되었다. 탄산화 반응을 통해 생성된 탄산칼슘 염으로 인해 순환골재의 세립분 생성이 감소하고 지지력이 증가함을 알 수 있었다. 또한 교반을 함께할 경우 추가적인 역학적 개량 효과를 통해 골재 파쇄값이 30.3%로 감소하고 노상토지지력비는 137.7%로 증가하였다. 본 연구에서 기술된 이산화탄소 처리 기술의 현장 적용 시 건설 산업의 탄소배출을 효과적으로 줄일 수 있을 것으로 보인다.

GCP의 쇄석과 모래의 배합비 별 응력분담비 (Stress Concentration Ratio of GCP Depending on the Mixing Ratio of Crushed Stone and Sand)

  • 나승주;김민석;박경호;김대현
    • 한국지반공학회논문집
    • /
    • 제32권9호
    • /
    • pp.37-50
    • /
    • 2016
  • 쇄석다짐말뚝(GCP)은 연약지반의 지지력 증가와 침하량의 감소를 실현할 수 있어 연약지반 개량에 활발하게 사용되고 있다. GCP 설계에 필요한 응력분담비는 치환율, 상재하중, 깊이 등에 따라 달라진다. 많은 연구자들이 현장실험, 실내실험, 수치해석 연구를 통해 쇄석으로 이루어진 GCP에 대해 치환율에 따른 응력분담비를 제시하였으나, 쇄석과 모래의 배합비에 따른 응력분담비에 관한 연구는 전무한 실정이다. 따라서 본 연구에서는 선행연구 분석과 수치해석을 통해 배합비와 치환율에 따른 응력분담비를 명확히 규명하고자 하였다. 이를 위해 유한요소해석 프로그램인 ABAQUS 6.12-4를 사용하여 GCP가 시공된 복합지반을 모델링하여 배합비와 치환율에 따라 복합지반의 과잉간극수압과 응력분담비를 분석하였다. 선행연구 분석결과, GCP 복합지반의 응력분담비에 관한 연구에서 일반적으로 현장에서 정재하시험, 실내시험, 수치해석을 통해 얻은 응력분담비는 각각 1.7~3, 2~7.5, 2~6.5 범위로 나타났으며, 쇄석과 모래의 배합비에 관한 연구에서는 일반적으로 클로깅현상을 저감시키기 위해 실내실험 한 결과로 쇄석과 모래의 최적배합비가 70:30으로 나타났다. 수치해석결과, 일반적인 GCP 복합지반의 치환율이 증가함에 따라 응력분담비가 치환율 30%까지는 증가하다가 40%에서는 다시 감소하는 경향이 나타났으며, 쇄석과 모래의 배합비에 따른 응력분담비는 일반적으로 모래의 함유량이 증가함에 따라 쇄석과 모래의 배합비가 70:30까지는 증가하다가 60:40 이후에 다시 감소하는 경향이 나타났다.

Experimental and numerical investigation of strengthened deficient steel SHS columns under axial compressive loads

  • Shahraki, Mehdi;Sohrabi, Mohammad Reza;Azizyan, Gholam Reza;Narmashiri, Kambiz
    • Structural Engineering and Mechanics
    • /
    • 제67권2호
    • /
    • pp.207-217
    • /
    • 2018
  • In past years, numerous problems have vexed engineers with regard to buckling, corrosion, bending, and overloading in damaged steel structures. This article sets out to investigate the possible effects of carbon fiber reinforced polymer (CFRP) and steel plates for retrofitting deficient steel square hollow section (SHS) columns. The effects of axial loading, stiffness, axial displacement, the position and shape of deficient region on the length of steel SHS columns, and slenderness ratio are examined through a detailed parametric study. A total of 14 specimens was tested for failure under axial compression in a laboratory and simulated using finite element (FE) analysis based on a numerical approach. The results indicate that the application of CFRP sheets and steel plates also caused a reduction in stress in the damaged region and prevented or retarded local deformation around the deficiency. The findings showed that a deficiency leads to reduced load-carrying capacity of steel SHS columns and the retrofitting method is responsible for the increase in the load-bearing capacity of the steel columns. Finally, this research showed that the CFRP performed better than steel plates in compensating the axial force caused by the cross-section reduction due to the problems associated with the use of steel plates, such as in welding, increased weight, thermal stress around the welding location, and the possibility of creating another deficiency by welding.

GCP로 개량된 복합지반의 관통률에 따른 응력분담비 (Stress Concentration Ratio According to Penetration Rate of Composite Ground Reinforced with GCP)

  • 나승주;김대현;이익효;이강일
    • 한국지반신소재학회논문집
    • /
    • 제16권2호
    • /
    • pp.35-45
    • /
    • 2017
  • 쇄석다짐말뚝(GCP)은 연약지반의 지지력 증가와 침하량 감소를 실현할 수 있어 연약지반 개량에 활발하게 사용되고 있다. 그리고 GCP 설계에 필요한 응력분담비는 치환율, 상재하중, 깊이, 관통률 등에 따라 달라진다. 그동안 많은 연구자들이 현장 실내 실험, 수치해석 연구를 통해 GCP로 개량된 복합지반의 응력분담비를 제안하였지만 명확하게 제시되지 못한 실정이다. 본 연구에서는 GCP공법의 합리적인 설계법 제안을 위한 기초연구로써, 유한요소해석프로그램인 ABAQUS 6.12-4를 이용하여 GCP로 개량된 복합지반을 모델링하여 치환율과 관통률에 따른 침하량과 응력분담비를 분석하고자 하였다, 그 결과, 최상부 지점을 제외한 다른 지점에서의 응력분담비의 값은 관통률 60%일 때 1.21~5.36, 관통률 80%일 때 1.19~5.45, 관통률 100%일 때 2.16~5.60 이었다. 이는 관통률과 치환율이 증가할수록 응력분담비의 값은 크게 증가함을 알 수 있다.

Research on the factors affecting the development of shrinkage cracks of rammed earth buildings

  • Zhao, Xiang;Cai, Hengli;Zhou, Tiegang;Liu, Ling;Ding, Yijie
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.365-375
    • /
    • 2021
  • Rammed earth (RE) buildings have existed all over the world for thousands of years, and have gained increasing attention because of its sustainable advantages, however, the shrinkage cracks reduce its bearing capacity and seriously affect its durability and applicability. In this study, the shrinkage cracks test was carried out to investigate the effects of initial water content, proportion of sand and gravel, compaction degree, thickness and the additives (polypropylene fiber, cement and sodium silicate) of shrinkage cracks in RE buildings, ten groups of RE samples were prepared and dried outdoors to crack. Four quantitative parameters of geometrical structure of crack patterns were used to evaluate the development of cracks. The results show that the specimens cracking behavior and the geometrical structure of crack patterns are significantly influenced by these considered factors. The formation of crack can be accelerated with the increase of initial water content and thickness of specimen, while restricted with the increase of the compaction degree and the proportion of sand and gravel. Moreover, the addition of 1% polypropylene fiber, 10% cement and 0.5 volume ratio sodium silicate can significantly restrain the form and development of cracks. In RE construction, these factors should be considered comprehensively to prevent the harm caused by shrinkage cracks. Further works should be carried out to obtain the optimum dosage of the additives, which can benefit the construction of RE buildings in future.

Shear behavior of geotextile-encased gravel columns in silty sand-Experimental and SVM modeling

  • Dinarvand, Reza;Ardakani, Alireza
    • Geomechanics and Engineering
    • /
    • 제28권5호
    • /
    • pp.505-520
    • /
    • 2022
  • In recent years, geotextile-encased gravel columns (usually called stone columns) have become a popular method to increasing soil shear strength, decreasing the settlement, acceleration of the rate of consolidation, reducing the liquefaction potential and increasing the bearing capacity of foundations. The behavior of improved loose base-soil with gravel columns under shear loading and the shear stress-horizontal displacement curves got from large scale direct shear test are of great importance in understanding the performance of this method. In the present study, by performing 36 large-scale direct shear tests on sandy base-soil with different fine-content of zero to 30% in both not improved and improved with gravel columns, the effect of the presence of gravel columns in the loose soils were investigated. The results were used to predict the shear stress-horizontal displacement curve of these samples using support vector machines (SVM). Variables such as the non-plastic fine content of base-soil (FC), the area replacement ratio of the gravel column (Arr), the geotextile encasement and the normal stress on the sample were effective factors in the shear stress-horizontal displacement curve of the samples. The training and testing data of the model showed higher power of SVM compared to multilayer perceptron (MLP) neural network in predicting shear stress-horizontal displacement curve. After ensuring the accuracy of the model evaluation, by introducing different samples to the model, the effect of different variables on the maximum shear stress of the samples was investigated. The results showed that by adding a gravel column and increasing the Arr, the friction angle (ϕ) and cohesion (c) of the samples increase. This increase is less in base-soil with more FC, and in a proportion of the same Arr, with increasing FC, internal friction angle and cohesion decreases.

원심모형시험을 통한 Piled Raft 기초의 지지력증가 특성 분석 (Analysis of Piled Raft Bearing Capacity Increase with Centrifuge Test)

  • 박동규;최규진;김동욱;정문경;이준환
    • 한국지반공학회논문집
    • /
    • 제28권8호
    • /
    • pp.43-53
    • /
    • 2012
  • 말뚝지지 전면기초는 무리말뚝 기초뿐만 아니라 전면기초까지도 연직력에 대하여 효과적으로 저항하기 때문에 지지력의 증가, 부등침하의 감소, 전체 침하량 억제 등의 장점이 있어 경제적인 기초형식으로 간주될 수 있다. 그러나 실제 말뚝지지 전면기초의 설계 및 설계 기준에 있어 전면기초의 지지력을 고려하고 있지 않기 때문에 전면 기초에 의한 지지력 증가 및 침하량 억제 효과는 고려되지 못하는 실정이다. 본 연구에서는 말뚝지지 전면기초의 거동특성을 분석하고 전면기초에 의한 지지력 증대효과를 정량화하기 위하여 원심모형시험을 수행하였다. 이를 위해 말뚝지지 전면기초, 무리말뚝기초, 전면기초, 단독 말뚝기초 등 각 기초형식에 대해 별도의 실험을 수행하였으며, 말뚝지지 전면기초의 지지력 특성 변화를 분석하고 다른 기초형식의 지지력 특성변화 분석 결과와 비교하였다.

Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils

  • Park, Tae-Woong;Kim, Hyeong-Joo;Tanvir, Mohammad Taimur;Lee, Jang-Baek;Moon, Sung-Gil
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.99-105
    • /
    • 2018
  • Soils are generally classified as fine-grained or coarse-grained depending on the percentage content of the primary constituents. In reality, soils are actually made up of mixed and composite constituents. Soils primarily classified as fine-grained, still consists of a range of coarse particles as secondary constituents in between 0% to 50%. A laboratory scale model test was conducted to investigate the influence of coarse particles on the physical (e.g., density, water content, and void ratio) and mechanical (e.g., quick undrained shear strength) properties of primarily classified fine-grained cohesive soils. Pure kaolinite clay and sand-mixed kaolinite soil (e.g., sand content: 10%, 20%, and 30%) having various water contents (60%, 65%, and 70%) were preconsolidated at different stress levels (0, 13, 17.5, 22 kPa). The quick undrained shear strength properties were determined using the conventional Static Cone Penetration Test (SCPT) method and the new Fall Cone Test (FCT) method. The corresponding void ratios and densities with respect to the quick undrained shear strength were also observed. Correlations of the physical properties and quick undrained shear strengths derived from the SCPT and FCT were also established. Comparison of results showed a significant relationship between the two methods. From the results of FCT and SCPT, there is a decreasing trend of quick undrained shear strength, strength increase ratio ($S_u/P_o$), and void ratio (e) as the sand content is increased. The quick undrained shear strength generally decreases with increased water content. For the same water content, increasing the sand content resulted to a decrease in quick undrained shear strength due to reduced adhesion, and also, resulted to an increase in density. Similarly, it is observed that the change in density is distinctively noticeable at sand content greater than 20%. However, for sand content lower than 10%, there is minimal change in density with respect to water content. In general, the results showed a decrease in quick undrained shear strength for soils with higher amounts of sand content. Therefore, as the soil adhesion is reduced, the cone penetration resistances of the FCT and SCPT reflects internal friction and density of sand in the total shear strength.

Experimental study on seismic behavior of RC beam-column joints retrofitted using prestressed steel strips

  • Yang, Yong;Chen, Yang;Chen, Zhan;Wang, Niannian;Yu, Yunlong
    • Earthquakes and Structures
    • /
    • 제15권5호
    • /
    • pp.499-511
    • /
    • 2018
  • This paper aims to investigate the seismic performance of the prestressed steel strips retrofitted RC beam-column joints. Two series of joint specimens were conducted under compression load and reversed cyclic loading through quasi-static tests. Based on the test results, the seismic behavior of the strengthened joints specimens in terms of the failure modes, hysteresis response, bearing capacity, ductility, stiffness degradation, energy dissipation performance and damage level were focused. Moreover, the effects of the amount of the prestressed steel strips and the axial compression ratio on seismic performance of retrofitted specimens were analyzed. It was shown that the prestressed steel strips retrofitting method could significantly improve the seismic behavior of the RC joint because of the large confinement provided by prestressed steel strips in beam-column joints. The decrease of the spacing and the increase of the layer number of the prestressed steel strips could result in a better seismic performance of the retrofitted joint specimens. Moreover, increasing the axial compression ration could enhance the peak load, stiffness and the energy performance of the joint specimens. Furthermore, by comparison with the specimens reinforced with CFRP sheets, the specimens reinforced with prestressed steel strips was slightly better in seismic performance and cost-saving in material and labor. Therefore, this prestressed steel strips retrofitting method is quite helpful to enhance the seismic behavior of the RC beam-column joints with reducing the cost and engineering time.