DOI QR코드

DOI QR Code

Analysis of Piled Raft Bearing Capacity Increase with Centrifuge Test

원심모형시험을 통한 Piled Raft 기초의 지지력증가 특성 분석

  • Park, Dong-Gyu (School of Civil and Environmental Eng, Yonsei Univ.) ;
  • Choi, Kyu-Jin (School of Civil and Environmental Eng, Yonsei Univ.) ;
  • Kim, Dong-Wook (Geotechnical Engineering Research Division, Korea institute of construction technology) ;
  • Chung, Moon-Kyung (Geotechnical Engineering Research Division, Korea institute of construction technology) ;
  • Lee, Jun-Hwan (School of Civil and Environmental Eng, Yonsei Univ.)
  • Received : 2012.03.14
  • Accepted : 2012.07.16
  • Published : 2012.08.31

Abstract

In the conventional design of a piled raft, the axial resistance offered by the raft itself is typically neglected and only that of the group pile is accounted in estimating the total axial resistance of the piled raft. As a consequence, piled rafts are usually designed conservatively by neglecting the raft resistance. In this study, a series of centrifuge model tests have been performed to compare the axial behavior of a group pile with that of a piled raft (both having 16 component piles with an array of $4{\times}4$) in sands with different relative densities and in clays with different preconsolidated pressures. The test results revealed that, with respect to the allowable settlement of 25 millimeters for bridge foundations, the piled raft resistances were greater than those of the group pile by 13% for dense sand, by 22% for loose sand, by 30% for stiff clay, and by 22% for soft clay. Furthermore, the ratio of piled raft resistance to group pile resistance increased as the settlement increased.

말뚝지지 전면기초는 무리말뚝 기초뿐만 아니라 전면기초까지도 연직력에 대하여 효과적으로 저항하기 때문에 지지력의 증가, 부등침하의 감소, 전체 침하량 억제 등의 장점이 있어 경제적인 기초형식으로 간주될 수 있다. 그러나 실제 말뚝지지 전면기초의 설계 및 설계 기준에 있어 전면기초의 지지력을 고려하고 있지 않기 때문에 전면 기초에 의한 지지력 증가 및 침하량 억제 효과는 고려되지 못하는 실정이다. 본 연구에서는 말뚝지지 전면기초의 거동특성을 분석하고 전면기초에 의한 지지력 증대효과를 정량화하기 위하여 원심모형시험을 수행하였다. 이를 위해 말뚝지지 전면기초, 무리말뚝기초, 전면기초, 단독 말뚝기초 등 각 기초형식에 대해 별도의 실험을 수행하였으며, 말뚝지지 전면기초의 지지력 특성 변화를 분석하고 다른 기초형식의 지지력 특성변화 분석 결과와 비교하였다.

Keywords

References

  1. Borel, S. (2001), "Comportement et dimensionnement des fondations mixtes." Ph.D. thesis de ENPC, Specialite Geotechnique, Paris.
  2. Fioravante, V. and Giretti, D. (2010), "Contact versus noncontact piled raft foundations", Canadian Geotechnical Journal, Vol.42, No.3, pp.716-730.
  3. Katzenbach, R., Arslan, U. and Moormann, Chr. (2000), "Piled raft foundation projects in Germany", Design Applications of Raft Foundations, Ed. by J.A. Hemsley, Thomas Telford Ltd., pp.323-391.
  4. Kim, H. T., Kang, I. K., Jeon, E. J. and Park, S. W. (2000), "Optimum design of piled raft foundations using a genetic algorithm", Journal of Korean Geotechnical Society(KGS), Vol.16, No.3, pp.47-55.
  5. Kim, H. T., Kang, I. K., Park. J. J. and Park, S. K. (2002), "Laboratory model test on load sharing characteristics of piled raft foundations applied vertical loads on sandy soils", Journal of KSCE, Vol.22, No.2-c, pp.111-120.
  6. Kim, K. N., Lee, S. H., Chung, C. K. and Lee, H. S. (1999), "Optimal pile placement for minimizing differential settlements in piled raft foundations", Journal of KSCE, Vol.19, No.3-4, pp. 831-839.
  7. Kwon, O. K., Oh, S. B. and Kim, J. B. (2005), "Experimental study on the load sharing ratio of group pile", Journal of Korean Geotechnical Society(KGS), Vol.21, No.5, pp. 51-58.
  8. Lee, J. H. and Jeong, S. S. (2007), "Three dimensional numerical analysis of piled raft on soft clay", Journal of Korean Geotechnical Society(KGS), Vol.23, No.5, pp.63-75.
  9. Lee, S. H. and Chung, C. K. (2003), "New design method for pile group under vertical load", Journal of Korean Geotechnical Society(KGS), Vol.19, No.1, pp.31-40.
  10. Lee, S. H., Kwon, O. K., Oh, S. B. and Kim, B. I. (2003), "Load distribution of piled raft", Journal of KSCE. Vol.23, No.3-c, pp.143-150.
  11. Lee, S. H., Park, Y. H. and Song, M. J. (2007), "A practical analysis method for the design of piled raft foundation", Journal of Korean Geotechnical Society(KGS), Vol.23, No.12, pp.83-94.
  12. Lee, S. H., Choi, Y. S., Chung, C. K. and Kim, M. M. (2000), "Influence of pile cap on the behaviors of vertically loaded pile groups". Journal of KSCE, Vol.20, No.1-c, pp.91-98.
  13. Liu, J. L., Yuan, Z. L. and Shang, K. P. (1985), "Cap-pile-soil interaction of bored pile groups", Proceeding of 11th ICSMFE, San Francisco, Vol.3, pp.1433-1436.
  14. Nabil F. Ismael (2001), "Axial load tests on bored piles and pile groups in cemented sands", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.127, No.9, pp.766-773. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(766)
  15. Park, J. O., Choo, Y. W. and Kim, D. S. (2009), "Estimation of slope behavior by soil temperature", Journal of Korean Geotechnical Society(KGS), Vol.25, No.7, pp.23-33.
  16. Poulos, H. G. (2001), "Piled-raft foundation: design and applications", Geotechnique, Vol.51, No.2, pp.95-113. https://doi.org/10.1680/geot.51.2.95.40292
  17. Randolph, M. F. (1994), "Design methods for pile groups and piled rafts", Proc 13th Inter. Conf. on Soil Mechanics and Foundation Engineering, New Delhi, India, Vol.5, pp.61-82.
  18. Randolph, M. F. and Wroth, C. P. (1978), "Analysis of deformation of vertically loaded piles", Journal of Geotechnical Engineering, ASCE, Vol.104, No.12, pp.1465-1488.
  19. Sanctis, L. and Mandolini, A. (2006), "Bearing capacity of piled rafts on soft clay soils", Journal of Geotechnical Engineering, ASCE, Vol.132, No.12, pp.1600-1610. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:12(1600)