• Title/Summary/Keyword: Bearing behavior characteristics

Search Result 307, Processing Time 0.023 seconds

Compression and Shear Capacity of Rubber Bearings with Various Geometric Parameters (다양한 기하학적 인자를 고려한 고무받침의 압축 및 전단 내력)

  • Park, Ji Yong;Kim, Joo Woo;Jung, Hie Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.559-570
    • /
    • 2014
  • In this study, compression and shear characteristics of laminated rubber bearings and lead rubber bearings with various parameters are investigated by using material and geometric nonlinear three-dimensional finite element analysis. Rubber coupon tests are performed to make a model of the laminated rubber bearings. In addition, the material constants of the rubber are calculated by the curve fitting process of stress-strain relationship. The finite element analysis and experimental tests of the laminate rubber bearings are used to verify the validity of the rubber material constants. It is seen that the compression behavior of the laminated rubber bearings and lead rubber bearings mainly varies depending on the first shape factors and their shear behavior significantly varies depending on the second shape factors. In addition, the horizontal stiffness and energy dissipation capacity of lead rubber bearing are increased when the diameter of a lead bar is increased.

Evaluation of Spudcan Penetration/Extraction Behavior in Uniform Sand and Clay (모래와 점토 단일지반에서의 스퍼드캔 관입/추출 거동 평가)

  • Yoo, Jin-Kwon;Park, Duhee;Kang, Jaemo
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.17-28
    • /
    • 2017
  • We performed laboratory spudcan penetration and extraction tests considering various geometries. Jumunjin sand, representative standard sand in South Korea, and kaolinite were used for uniform sand and clay layers, respectively. The measured vertical bearing and pull-out capacities were compared to empirical equations for shallow foundations. The results showed good agreement between measured and calculated bearing capacity from laboratory test and previous study at shallow depths. The effect of spudcan geometry is shown to depend on site condition. The influence of a sharp spigot is not significant in clays. The slope of the spudcan surface is shown to influence the pull-out capacity. The characteristics of spudcan penetration and extraction behavior considering various geometries can be a useful reference for determining spudcan geometries.

An Analysis on the Behavior Characteristics of the Side of Drilled Shafts in Rocks (암반에 근입된 현장타설말뚝의 주면부 거동특성 분석)

  • Lee, Hyukjin;Lee, Hyungkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.101-111
    • /
    • 2006
  • In case of drilled shafts installed by drilling through soft overburden onto a strong rock, the piles can be regarded as end-bearing elements and their working load is determined by the safe working stress on the pile shaft at the point of minimum cross-section or by code of practice requirements. Drilled shafts drilled down for some depth into weak or weathered rocks and terminated within these rocks act partly as friction and partly as end-bearing piles. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft pile performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. In this study, the numerical analyses are carried out to investigate the behavior characteristics of side of rock socketed drilled shafts varying the loading condition at the pile head. The difference of behavior characteristics of side resistance is also evaluated with the effects of modelling of asperity.

  • PDF

Mechanical Characteristics of Carbon/Epoxy Composite for Aircraft Control System (항공기용 카본/에폭시 비행조종 장치의 기계적 특성에 관한 연구)

  • 조치룡;김현수;김광수
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.19-27
    • /
    • 1999
  • A design development test for carbon/epoxy composite laminates for an aircraft flight control system is performed. The design development test includes moisture absorbing test, tensile, compressive, bearing and lap shear tests. The moisture absorbing behavior for different fiber orientation angles is investigated and the changes in mechanical characteristics are compared. In the in-plane tensile test, the effect of damages such as scratches and impacts is studied. The bearing test is performed for different fastening types. The resulting design allowable stress and environmental load enhancement factor are used for the structural analysis and certification tests for the flight control system.

  • PDF

Nonlinear Analysis of Curved Cable-Membrane Roof Systems (굴곡형 케이블-막 지붕 시스템의 비선형 해석)

  • Park, Kang-Geun;Kwun, Ik-No;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.45-55
    • /
    • 2017
  • The objective of this study is to estimate the mechanical characteristics and nonlinear behaviors on the geometric nonlinear analysis of curved cable-membrane roof systems for long span lightweight roof structures. The weight of a cable-membrane roof dramatically can reduce, but the single layer cable-membrane roof systems are too flexible and difficult to achieve the required structural stiffness. A curved cable roof system with reverse curvature works more effectively as a load bearing system, the pretension of cables can easily increase the structural stiffness. The curved cable roof system can transmit vertical loads in up and downward direction, and work effectively as a load bearing structure to resists self-weights, snow and wind loads. The nonlinear behavior and mechanical characteristics of a cable roof system has greatly an affect by the sag and pretension. This paper is carried out analyzing and comparing the tensile forces and deflection of curved roof systems by vertical loads. The elements for analysis uses a tension only cable element and a triangular membrane element with 3 degree of freedom in each node. The authors will show that the curved cable-membrane roof system with reverse curvature is a very lightweight and small deformation roof for external loads.

Cyclic loading test of abnormal joints in SRC frame-bent main building structure

  • Wang, Bo;Cao, Guorong;Yang, Ke;Dai, Huijuan;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.417-430
    • /
    • 2021
  • Due to functional requirements, SRC column-RC beam abnormal joints with characteristics of strong beam weak column, variable column section, unequal beam height and staggered height exist in the Steel reinforced concrete (SRC) frame-bent main building structure of thermal power plant (TPP). This paper presents the experimental results of these abnormal joints through cyclic loading tests on five specimens with scaling factor of 1/5. The staggered height and whether adding H-shaped steel in beam or not were changing parameters of specimens. The failure patterns, bearing capacity, energy dissipation and ductile performance were analyzed. In addition, the stress mechanism of the abnormal joint was discussed based on the diagonal strut model. The research results showed that the abnormal exterior joints occurred shear failure and column end hinge flexural failure; reducing beam height through adding H-shaped steel in the beam of abnormal exterior joint could improve the crack resistance and ductility; the abnormal interior joints with different staggered heights occurred column ends flexural failure; the joint with larger staggered height had the higher bearing capacity and stiffness, but lower ductility. The concrete compression strut mechanism is still applicable to the abnormal joints in TPP, but it is affected by the abnormal characteristics.

Long-Term Characteristics on Flexural Performance of Steel Fiber Reinforced Concrete Continuous Slab (강섬유보강콘크리트 연속슬래브 휨성능의 장기거동 특성)

  • Hong, Geon-Ho;Jung, Seong-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.163-170
    • /
    • 2019
  • In spite of various advantages, steel fiber reinforced concrete is still limited in its use due to the insufficient research results on the structural performance and design criteria. This study evaluated the long-term behavior of the steel fiber reinforced concrete slabs by long-term loading experiments based on the short-term load bearing capacity of steel fiber reinforced concrete slabs obtained from previous studies. In this study, long-term loading experiments were carried out on Total four 2-span continuous slab specimens were tested for examining the long-term behavior of steel fiber reinforced concrete members. Long-term behavior characteristics of members were evaluated by measuring the long-term deflection, drying shrinkage, the number and width of cracks. Experimental results showed that the instant deflection of the steel fiber reinforced concrete slab is about 50% of the normal reinforced concrete slab. And, it was analyzed that the long-term deflection of the specimen using steel fiber reinforced concrete was about 10~20% lower than that of normal concrete by the long-term deflection over 100 days. In addition, the slab specimen using steel fiber reinforced concrete was evaluated to have just 70% of the number and width of cracks compared with normal concrete specimens.

Behavior characteristics of Soft Ground Improved by Granular Pile (Granular Pile에 의해 개량된 연약지반의 거동특성)

  • Chun, Byung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.63-72
    • /
    • 2001
  • As construction cases on soft ground are increasing, the necessity of ground improvement is also increasing. Granular pile is one of the methods for soft clay and for loose sandy soil. In our country, SCP(Sand Compaction Pile) method using sand material has been mainly used to improve soft ground, but Granular pile with crushed-stone was not used much. However, alternative material such that crushed-stone is needed to substitute for sand due to the environmental and economical problems. In this study, staged load test and consolidation test were performed in the laboratory to observe the behavior of soft ground improved by Granular pile. In order to evaluate the characteristics such as bearing capacity, drainage, and settlement, sand and crushed-stone were applied as each pile material. The test results show that crushed-stone has higher bearing capacity and less settlement than those of sand under similar pore water pressure condition. Therefore, crushed-stone is determined to be appropriate as substitute for sand.

  • PDF

Characteristics on Pullout Behavior of Belled Tension Pile in Sandy Soils (사질토지반의 선단확장형말뚝의 인발거동 특성)

  • Cho, Seok-Ho;Kim, Hak-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3599-3609
    • /
    • 2010
  • Recently, the construction of coastal structures and high-rise structures against the horizontal and uplift forces increases with the developing the coastal developments. Especially the application of belled tension pile as foundation type to effectively resist uplift force is increasing in coastal structures. However, research on pullout resistance of belled tension pile has been limited and not yet been fully performed. Therefore, the pullout load tests of belled tension piles in four overseas sites were performed, then the bearing capacity, characteristics on load-displacement of piles and load distribution considering skin friction were investigated in this paper. In addition, the limit pullout bearing capacity calculated by the three-dimensional finite element analysis and theoretical methods were compared with values of in-situ test.

Creep Characterization of 9Cr1Mo Steel Used in Super Critical Power Plant by Conversion of Stress and Strain for SP-Creep Test (SP-Creep 시험의 응력 및 변형률 환산에 의한 초임계압 발전설비용 9Cr1Mo강의 크리프 특성 평가)

  • Baek, Seung-Se;Park, Jung-Hun;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1034-1040
    • /
    • 2006
  • Due to the need of increasing thermal efficiency, supercritical pressure and temperature have been utilized in power plants. It is well known that 9Cr1Mo steel is suitable fer use in power plants operating at supercritical conditions. Therefore, to ensure the safety and the soundness of the power plant, creep characterization of the steel is important. In this study, the creep characterization of the gCr1Mo steel using small punch creep(SP-Creep) test has been described. The applied load and the central displacement of the specimen in SP-Creep test have been converted to bearing stress and strain of uc, respectively. The converted SP-Creep curves clearly showed the typical three-stage behavior of creep. The steady-state creep rate and the rupture time of the steel logarithmically changed with the bearing stress and satisfied the Power law relationship. Furthermore, the Larson-Miller parameter of the SP-Creep test agreed with that of the tensile creep test. From the comparison with low Cr-Mo steels, the creep characteristics of 9Cr1Mo steel proved to be superior. Thus, it can be confirmed that the 9Cr1Mo steel is suitable for supercritical power plant.