• Title/Summary/Keyword: Bearing bar

Search Result 134, Processing Time 0.031 seconds

Bearing Strength of Concrete Column and Steel Beam Composite Joints (콘크리트 기둥과 철골 보 합성골조 접합부에서의 지압강도)

  • Kim, Byong-Kook;Lee, Won-Kyu;Choi, Oan-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.417-424
    • /
    • 2003
  • A bearing failure in RCS(Reinforced Concrete Column and Steel Beam) system is recognized as one of the distinct joint failure modes for the composite frames. Vertical and transverse reinforcement in addition to concrete are effective for better transfer of vortical forces through concrete bearing. To examine the effect of the vertical bars, tie bars, a U-type detail developed in this study and concrete confinement, local bearing tests were conducted using 22 small-scale concrete block specimens. Test results show that vertical reinforcement and tie bars mainly contribute to the bearing capacity. However larger amounts of tie reinforcement are required than those recommend from ASCE guidelines, to apply the nominal concrete strength as 2 $f_{ck}$ over the bearing area. Cross ties are proved to be highly effective for resisting the vertical forces. Maximum bearing strength can be increased upto 2.5 $f_{ck}$ . An accurate prediction model for bearing strength is proposed for better design of the composite Joint.

Bond Strength Analysis of High Relative Rib Area Bars Using Decreasing Bearing Angle Theory (지압각 감소이론을 이용한 높은마디면적 철근의 부착강도 해석)

  • Yang, Seung-Yul;Seo, Dong-Min;Park, Young-Su;Hong, Gun-Ho;Choi, Oan-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.185-188
    • /
    • 2005
  • Bond between reinforcing bar and surrounding concrete is supposed to transfer load safely in the process of design of reinforced concrete structures. Bond strength of ribbed reinforcing bars tends to split concrete cover, by wedging action, or shear the concrete in front of the ribs. In this study, using a reducing bearing angle theory, bond strengths of beam end specimen are predicted. Values of bond strength obtained using the analytical model are in good agreement with the bond test results. The analytical model provides insight into bond mechanism and the effects of bearing angle on the bond strength of deformed bars to concrete.

  • PDF

Cryogenic Bearing and Seal Test Facility for a Turbopump (터보펌프용 극저을 베어링/실 성능시험설비)

  • Kwak, Hyun-D.;Jeon, Seong-Min;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.341-347
    • /
    • 2005
  • To perform a cryogenic development test for Tribo-elements in a turbopump, a cryogenic bearing and seal test facility (BSTF) is designed and currently under construction in KARI. The working fluid is liquid nitrogen operating at a temperature $-197^{\circ}C$. The maximum operating pressure and volume flow rate of BSTF are 100 bar and 10 liters per second, respectively. The development tests of floating ring seals, inter-propellant seals (IPS) and cryogenic ball bearings in a turbopump will be performed using the BSTF. This paper briefly described design requirements and procedures of BSTF.

  • PDF

Analysis of Dynamic Deformation of 4-Bar Linkage Mechanism(II) (4절 링크 기구의 동적 변형 해석 (II))

  • 조선휘;박종근;주동인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.910-923
    • /
    • 1992
  • Experimental verification of numerical results is conducted by measuring the dynamic strains of mid-points of the coupler and the lever for the 4-bar linkage mechanism with rigid bearing and flexible bearing, respectively. For the axial strain of lever mid-point, the numerical results including geometric stiffness almost agree with the experimental ones, however, the numerical results excluding geometric stiffness almost agree with the experimental ones for the axial strain of coupler mid-point. It is supposed that these phenomena should be caused by the fact that the motion of the coupler is more complicated than of the lever. The signals of dynamic strains of coupler and lever mid-points, measured by strain gages, are transformed into frequency domain by fast fourier transformer. From this experiment, the lst resonance frequencies of the coupler and the lever are obtained. It is made clear that the former almost agrees with the fundamental and the latter the 2nd mode natural frequency of the mechanism system calculated by numerical analysis.

Verification Studies for Field Peformance of Micropiling (성능검증을 위한 마이크로파일 현장 시험시공 및 재하시험)

  • Goo, Jeong-Min;Lee, Ki-Hwan;Cho, Young-Jun;Choi, Chang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.368-375
    • /
    • 2009
  • This paper describes field installation and load test results performed for three types of micropiles in the process of developing a new micropiling method. Field tests were performed for two conventional types(i.e., micropile reinforced with steel bar and gravity grouting, micropile reinforced with steel bar and steel casing and gravity grouting) and a proposed type(i.e., micropile reinforced with hollow steel pipe wrapped with geotextile-pack and pressurized grouting). The load test results subjected to axial compression and tension and lateral loading conditions are described in this paper. The micropiles were exposed in the air in order to verify the installation quality and curing condition of grouting material via ground excavation. Axial compression and tension test results indicate that the new micropile type provide at least 40% higher bearing capacity than that of conventional types. Based on the examination of exposed piles, it is induced that the proposed method, packed micropile, provides better interlocking between grouts and surrounding soils and increases higher frictional resistance comparing to conventional types.

  • PDF

A Study on The Improving Effects of the Bearing Capacity of Very Soft Ground by Restricting Conditions of Reinforcement (보강재의 구속조건에 따른 초연약지반의 지지력개선효과에 관한 연구)

  • Ham, Tae-Gew;Cho, Sam-Deok;Yang, Kee-Sok;Yoo, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.3
    • /
    • pp.41-49
    • /
    • 2008
  • This study was carried out the model experiment in laboratory to evaluate the bearing capacity improvement of soft ground as altered constraint condition of reinforcements according to geotextile, georid, steel bar. As a results, the value of BCR was increased linearly as improvement of the stiffness of reinforcements, and the factor governed the increasement of BCR was the increasement of frictions between reinforcement and clay as far as the constrain conditions increased until T=85.6kg. Moreover, An angle of inclination, ${\theta}$, between reinforcement and horizontal surface was distributed from $38^{\circ}$ to $50^{\circ}$ for Geotextile, from $45^{\circ}$ to $50^{\circ}$ for Geogrid and from $14^{\circ}$ to $16^{\circ}$ for steel bar. A radius of heaving, r, of clay ground by vertical weight at side was distributed from 0.6m to 0.7m for Geotextile, from 0.5m to 0.8m for Geogrid, and from 2.4m to 3.0m for steel bar. In case of steel bar, r was 4 times that of Geotextile.

  • PDF

Study(VII) on Development of Charts and Equations Predicting Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Allowable Axial Compressive Bearing Capacity Formulae - (사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(VII) - 지반의 허용압축지지력 산정공식 -)

  • Kwon, Oh-Kyun;Nam, Moon S.;Lee, Wonje;Yea, Geu Guwen;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.69-89
    • /
    • 2019
  • Design chart solution and table solution were proposed by Choi et al. (2019a), which conducted a parametric numerical study for the bored PHC piles socketed into weathered rocks through sandy soil layers. Based on the Choi et al. (2019a), the new prediction formulae for mobilized capacity components such as total capacity, total skin friction and skin friction of sand at the settlement of 5% pile diameter were proposed in this study. The proposed prediction formulae (EQ-G1) considers pile diameter, relative embedment length and ${\bar{N}}$ (i.e, corrected N) value and their verification results are as follows. The SRF calculated from the new proposed design method was 71~94%, which are greatly improved compared with results by the existing design method. The design efficiency of bearing capacity was in the range of reasonable design except 4 cases, and the design efficiency of the PHC pile was evaluated as 85%. Therefore, it is possible that allowable compressive load (Pall) of PHC pile can be utilized in the resonable design by means of the new proposed method using EQ-G1 equations. And the other new proposed equations of EQ-G2-3 can be utilized approximately in calculation of axial compressive bearing capacity components for prebored PHC pile.

The Failure Standard to Estimate the Behavior and Bearing Capacity for Connected-type Foundation of Transmission Tower in Clay (점토지반에 근입된 송전철탑 연결형 기초의 거동 특성 및 지지력결정을 위한 파괴기준)

  • Kyung, Doo-Hyun;Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.27-40
    • /
    • 2011
  • In this study, we performed model lateral load test for connected-type foundations of transmission tower with bar in clay, and proposed failure standard and measuring method to estimate ultimate lateral bearing capacity. For this study, we performed model lateral load tests in Iksan, Jeollabukdo and analyzed load-displacement characteristic of the model. We manufactured model foundation of transmission tower connected with bar and that considered a change of rigidity. We installed various measuring sensors to find general foundation behavior. From the test results, we measured, compared and analyzed load capacities, and then proposed failure standard to estimate bearing capacity for connecting type foundation.

Micro modelling of masonry walls by plane bar elements for detecting elastic behavior

  • Doven, Mahmud Sami;Kafkas, Ugur
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.643-649
    • /
    • 2017
  • Masonry walls are amongst the oldest building systems. A large portion of the research on these structures focuses on the load-bearing walls. Numerical methods have been generally used in modelling load-bearing walls during recent years. In this context, macro and micro modelling techniques emerge as widely accepted techniques. Micro modelling is used to investigate the local behaviour of load-bearing walls in detail whereas macro modelling is used to investigate the general behaviour of masonry buildings. The main objective of this study is to investigate the elastic behaviour of the load- bearing walls in masonry buildings by using micro modelling technique. In order to do this the brick and mortar units of the masonry walls are modelled by the combination of plane truss elements and plane frame elements with no shear deformations. The model used in this study has fewer unknowns then the models encountered in the references. In this study the vertical frame elements have equivalent elasticity modulus and moment of inertia which are calculated by the developed software. Under in-plane static loads the elastic displacements of the masonry walls, which are encountered in literature, are calculated by the developed software, where brick units are modelled by plane frame elements, horizontal joints are modelled by vertical frame elements and vertical joints are modelled by horizontal plane truss elements. The calculated results are compatible with those given in the references.

A Study on Bearing Capacity Evaluation Method of Surface Reinforcement Method for Soft Ground in Consideration of Stiffness (강성도를 고려한 연약지반 표층처리공법 지지력산정방법에 관한 연구)

  • Ham, Tae-Gew;Seo, Se-Gwan;Cho, Sam-Deok;Yang, Kee-Sok;You, Seung-Kyong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1118-1125
    • /
    • 2009
  • This study, as basic research which was intended to develope the surface reinforcement method using reinforcement material which is applicable to very soft ground in Korea, was aimed at proposing Bearing Capacity Evaluation method for the surface ground improvement method. To that end, a wide width tensile test using geotextile, geogrid and steel bar (substitute for bamboo) and 21 kinds of the laboratory model tests with the end restraint conditions of the reinforcement that comprises the constrained and partially constrained (3 types) conditions were conducted. According to result of tests, Terzaghi's bearing capacity method is adequate to calculate bearing capacity in non-stiff material(geotextile, geogrid). But, It can't adequate to stiff material(bamboo net). So, New bearing capacity method suggest surface reinforcement method of very soft ground which Terzaghi's bearing capacity method modify for effect of stiffness.

  • PDF