• Title/Summary/Keyword: Bearing Support

Search Result 413, Processing Time 0.026 seconds

Failure Analysis of Deteriorated Reinforced Concrete T-Girder Bridge Subject to Cyclic Loading (정적 반복하중을 받는 노후된 철근콘크리트 T형교의 파괴해석)

  • 송하원;송하원;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.291-301
    • /
    • 1998
  • In this paper, two dimensional and three dimentional modeling techniques are proposed for the failure analysis of deteriorated reinforced concrete T-girder bridge subjected to cyclic loading up to failure. For the nonlinear failure anaysis, a tension stiffening model which can consider degradation of bond between reinforcement and surrounding concrete due to corrision of rebars in old bridge is proposed and a modeling technique for the supports conditions of the bridges which can consider degradation of bearing at supports in old bridge is also proposed, The analysis results along with comparisons with full-scale failure-test results confirm that finite element modeling techniques in this paper can be well applied to the failure analyses of in-situ old reinforced concrete T-girder bridges subjected to cyclic loading and the support condition modeling especially affects the bridge strength significantly.

Critical Speed Analysis of the Liquid Rocket Turbopump (액체로켓 터보펌프의 임계 속도 해석)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Yoon, Suk-Hwan;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.92-99
    • /
    • 2005
  • Numerical analyses of critical speed and mass unbalance response are performed for a 30 ton thrust turbopump. The stiffness and damping of ball bearings and non-contact seals are quantified under aerodynamic and hydrodynamic loads induced by a fuel pump and turbine. Critical speed margin and tip displacements of the rotating parts are evaluated using a three-dimensional finite element method. The results are used to ensure the soundness of the rotordynamic design using an one-dimensional transfer matrix method. A further study shows that sufficient resonance margin may be assured via controlling the stiffness of the rotor support by employing an additional elastic ring to the bearing support.

Thermal Expansion Measurement of Turbine and Main Steam Piping by Using Strain Gages in Power Plants (스트레인게이지를 활용한 발전소 터빈 및 주증기 배관의 열팽창 측정)

  • Na, Sang-Soo;Chung, Jae-Won;Bong, Suk-Kun;Jun, Dong-Ki;Kim, Yun-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.886-891
    • /
    • 2000
  • One of the domestic co-generation plants have undergone excessive vibration problems of turbine attributed to external force for years. The root cause of turbine vibration may be shan alignment problem which sometimes is changed by thermal expansion and external farce, even if turbine technicians perfectly performed it. To evaluate the alignment condition from plant start-up to full load, a strain measurement of turbine and main steam piping subjected to thermal loading is monitored by using strain gages. The strain gages are bonded on both bearing housing adjusting bolts and pipe stoppers which. installed in the x-direction of left-side main steam piping near the turbine inlet in order to monitor closely the effect of turbine under thermal deformation of turbine casing and main steam piping during plant full load. Also in situ load of constant support hangers in main steam piping system is measured by strain gages and its results are used to rebalance the hanger rod load. Consequently, the experimental stress analysis by using strain gages turns out to be very useful tool to diagnose the trouble and failures of not only to stationary components but to rotating machinery in power plants.

  • PDF

Study on Evaluating Displacement Tolerance of Sky-bridge in Tall Buildings (고층 스카이브리지의 변위 허용치 산정에 대한 연구)

  • Kim, Yun Gon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.4
    • /
    • pp.135-142
    • /
    • 2020
  • The new method for evaluating the displacement tolerance of sky-bridges with pin-roller type supports was proposed considering both return period of phase difference between connected buildings and geometrical characteristics of skybridge. Because displacement tolerance is relative value, which is most affected by the phase difference of the connected buildings, the dynamic response of these building with time history analysis should be evaluated. However, the initial phase could not be specified, so the result of displacement tolerance would be varied with respect to initial value. Thus, the tolerance can be reasonably evaluated SRSS calculation with design displacements based on statistical approach and of each building. In addition, the geometrical characteristics of sky-bridge should be considered because the transverse displacement of sky-bridge span causes the shear deformation of the bridge and longitudinal displacement tolerance cannot release the shear deformation. Therefore, the some pin-end support in sky-bridge should have longitudinal displacement tolerance to accommodate the shear deformation. By resolving this shear deformation, it is possible not only to accommodate transverse displacement, but also to avoid the complicated joint details such as both pot bearing and guided supports with shear key.

Ultimate Limit State Risk Assessment of Penta Pod Suction Bucket Support Structures for Offshore Wind Turbine due to Scour (세굴에 기인한 해상풍력터빈 펜타팟 석션버켓 지지구조물의 극한한계상태 위험도 평가)

  • Kim, Young Jin;Vu, Ngo Duc;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.374-382
    • /
    • 2021
  • The scour risk assessment was conducted for ultimate limit state of newly developed penta pod suction bucket support structures for a 5.5 MW offshore wind turbine. The hazard was found by using an empirical formula for scour depth suitable for considering marine environmental conditions such as significant wave height, significant wave period, and current velocity. The scour fragility curve was calculated by using allowable bearing capacity criteria of suction foundation. The scour risk was assessed by combining the scour hazard and the scour fragility.

Controller Design and Validation of Radial Active Magnetic Bearing Systems Considering Dynamical Changes Due To Rotational Speeds (회전속도에 따른 동역학적 변화를 고려한 반경방향 능동 자기베어링 시스템의 제어기 설계 및 검증)

  • Jeong, Jin Hong;Yoo, Seong Yeol;Noh, Myounggyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.925-932
    • /
    • 2014
  • If a rotor possesses a high gyroscopic coupling or the running speed is high, the dynamical changes in the rotor become prominent. When active magnetic bearings are used to support such rotors, it is necessary for the bearing controller to take these dynamical changes into consideration. Independent-axis controllers, which are the most commonly used, modulate the bearing force solely based on the sensor output of the same axis. However, this type of controller has difficulties in overcoming the dynamical changes. On the other hand, mixed-axis controllers transform the sensor output into components corresponding to the vibrational modes. A separate controller can then be designed for each vibrational mode. In this way, the controller can be designed based on the dynamics of the rotor. In this paper, we describe a design process for a mixed-axis controller that uses a detailed mathematical model of the system. The performance of the controller is evaluated based on the ISO sensitivity requirements and unbalance response, while considering the change in the system dynamics due to the running speed.

Development of Nonlinear Spring Modeling Technique of Group Suction Piles in Clay (점성토 지반에 근입된 그룹 석션파일에 대한 비선형 스프링 모델링 기법 개발)

  • Lee, Si-Hoon;Lee, Ju-Hyung;Tran, Xuan Nghiem;Kim, Sung-Ryul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Recently, several researches on the development of new economical anchor systems have been performed to support floating structures. This study focused on the group suction piles, which connect mid-sized suction piles instead of a single suction pile with large-diameter. The group suction pile shows the complex bearing behavior with translation and rotation, so it is difficult to apply conventional design methods. Therefore, the numerical modeling technique was developed to evaluate the horizontal bearing capacity of the group suction piles in clay. The technique models suction piles as beam elements and soil reaction as non-linear springs. To analyze the applicability of the modeling, the horizontal load-movement curves of the proposed modeling were compared with those of three-dimensional finite element analyses. The comparison showed that the modeling underestimates the capacity and overestimate the displacement corresponding to the maximum capacity. Therefore, the correction factors for the horizontal soil resistance was proposed to match the bearing capacity from the three-dimensional finite element analyses.

A Study on the Behavior Characteristics of Large Deep Foundations (대형 깊은 기초의 지지거동 특성에 관한 연구)

  • Park, Choon-Sik;Jung, Kwang-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.83-91
    • /
    • 2020
  • In this study, the characteristics of support behavior according to the change of ground condition of the cast-in-place pile and the large Caisson foundation, which are increasingly used as foundations of large structures and bridges. the allowable bearing capacity calculated using the yield load analysis method was analyzed to calculate similar allowable bearing capacity for each method. In addition, the allowable bearing capacity calculated by the ultimate load analysis method was found to have a large difference in bearing capacity for each method. Through this point, it can be usefully used as an empirical formula for evaluating the settlement characteristics of piles in future design and construction. In addition, as a result of examining the ground force distribution during sedimentation of large caissons, the section of the weathered rock layer showed almost constant ground force distribution as ground forces decreased after yield occurred at the base corner. And in the bed rock layer section, the foundation's center was transformed into a ground force in the form of a convex downward due to an increase in the ground resistance of the central part. Using these results, the theory previously presented by Fang (1991) and Kőgler (1936) was proved.

The effects of intensive gait training with body weight support treadmill training on gait and balance in stroke disability patients: a randomized controlled trial

  • Lee, Byung Joon;Lee, Hwang Jae;Lee, Wan Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.2 no.2
    • /
    • pp.104-110
    • /
    • 2013
  • Objective: The purpose of this study was to investigate the effects of intensive gait training with body weight support treadmill training on gait and balance in stroke disability patients. Design: Randomized controlled trial. Methods: Twenty-six stroke patients (20 men and 6 women) participated in this study. All subjects were hospitalized patients. They were randomly divided into two groups: the experimental group (body weight supported treadmill training group, n=14) and control group (treadmill group, n=12). The mean ages were 52.07 years (experimental group) and 53.83 years (control group). Subjects in both groups received conventional training 10 times/wk. Subjects in the experimental group practiced body weight supported treadmill training for 30 minutes a day, 3 day/wk. Subjects in the control group practiced treadmill training for 30 minutes. The Berg Balance Scale (BBS) and GAITRite were used to evaluate balance and gait parameters (step length, cadence and gait speed) before and after the intervention. Results: BBS scores in the experimental group showed significantly greater improvement ($4.33{\pm}1.54$), compared with the control group (p<0.05). Significantly greater improvement in the gait speed ($24.13{\pm}4.53$ cm/s), affected side step length ($10.40{\pm}3.42$ cm), sound side step length ($11.97{\pm}3.29$ cm), and cadence ($23.88{\pm}5.52$ step/min), compared with the control group (p<0.05). Conclusions: Intensive gait training with Body Weight Support Treadmill Training may improve gait and balance in subacute stroke.

Two-Way Car Ferry Thrust Shaft Primary Support Part Structural Integrity Evaluation (양방향 카페리 추진축 1차 지지부 구조건전성 평가)

  • Kang, Byoung-Mo;Oh, Young-Cheol;Bae, Dong-Gyun;Ko, Jae-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.163-164
    • /
    • 2013
  • Two-Way CAR-FERRY land and islands, islands to islands, the connection between sustainable marine transportation in conjunction with the increasing demand of tourists, according to the associated coastal maritime tourism and passenger transport has a role. Subsequent Two-Way CAR-FERRY and the increased ease of use due to berthing maritime accidents can be reduced. Two-Way CAR-FERRY as the draft (even) in the state on both sides of the propeller, because the propeller due to the small diameter, low speed forward flight by the reaction at the shaft and propeller damage can occur. Engine output accordingly, linear and torsional vibration reducer by, elastic coupling selection transverse vibration and shaft alignment (Shaft alignment) considering the shaft design (bearing size, width, thickness) and the primary drive shaft support portion of the hull structure of evaluated for quality.

  • PDF