본 연구는 파이프하우스의 구조적 안전성을 검토하는데 필요한 기초자료를 구축하기 위하여 실시하였다. 지반에 매입된 파이프의 지점상태를 검토하여 적합한 구조해석 모델을 찾고, 파이프를 말뚝기초로 가정했을 때의 파이프의 지지력 및 인발 저항력을 구하기 위하여 모형 실험을 실시하였으며, 그 결과를 요약하면 다음과 같다. 1. 파이프하우스의 지점상태를 검토해본 결과 단동 하우스에서는 수평 및 연직하중 모두 고정으로, 연동하우스에서는 수평하중 재하시 힌지, 연직 하중 재하시 고정으로 해석하는 것이 실험치에 더 가까운 것으로 나타났다. 2. 지반에 매입된 파이프의 인발저항력은 파이프 직경 및 매입깊이에 따라 논의 연한지반에서는 35-54kg, 밭의 보통지반에서는 61-98kg, 단단한 지반에서는 108-120kg이상으로 나타났으며, 파이프와 흙사이의 주변마찰력은 1.51-4.76t/$m^2$정도의 범위를 보였다. 3. 파이프 직경 및 매입깊이에 따른 기초 지지력은 연한지반의 경우 35-76kg, 보통지반은 88-158kg, 단단한 지반은 131-305kg의 범위를 보였으며, 파이프의 선단지지력은 연한지반 0-22kg, 단단한 지반 22-140kg으로 나타났다. 4. 국내에서 많이 보급되어 있는 대표적인 파이프하우스의 경우, 적설심 30cm 까지는 파이프의 매입깊이가 30cm이면 지지력이 충분하지만 그 이상의 적설심에서는 지반의 종류에 따라 매입깊이를 증가시켜야 하고, 인발저항의 경우도 풍속 30㎧까지는 매입깊이 30cm이면 충분하지만 그 이상의 풍속에 대하여는 매입깊이를 증가시키거나 보강이 필요한 것으로 나타났다.
Purpose: This study was undertaken to determine whether the position of cane use affects the distribution of weight-bearing on both feet of children with hemiplegic cerebral palsy in a standing posture. Methods: Twenty participants with cerebral palsy were recruited as volunteers for this study. Using the Zebris FDM-System, weight-bearing distribution according to the method of using a cane was measured under three conditions in randomized order: (1) standing unaided (no cane); (2) standing with the affected side using the cane; and (3) standing with the non-affected side using the cane. The cane was matched by measuring length-from-floor to the greater trochanter of the subject, and was placed 15 cm outward from the little toe on the supporting side. Results: Evaluating the method of using a cane under the three conditions, we determined that pressure of the foot on the affected side was higher in the order: standing with affected side using cane > standing unaided (no cane) > standing with non-affected side using cane (p<0.05). In the post-hoc analysis, a significant difference was observed between (i) standing unaided (no cane) and standing with the affected side using cane, and (ii) standing with affected side using cane and standing with non-affected side using cane (p<0.05). Conclusion: This study suggests that induced weight-bearing methods using a cane on the affected side could increase the weight-bearing capacity on the affected side in children with spastic hemiplegic cerebral palsy, which will have a positive effect on reducing asymmetry weight support.
Micropiled raft has been used to support the existing and new structures or to provide the seismic reinforcement of foundation systems. Recently, research on micropile or micropiled raft has been actively conducted as the usage of micropile has increased, and the reinforcement effect of pile for the raft, the pile installation methods, and methods for calculating the bearing capacity of micropiled raft have been proposed. In addition, existing research results show that the behavior of this foundation system is different depending on the pile conditions and can be greatly influenced by the characteristics of the upper or lower ground depending on the conditions of pile. In other words, considering that the micropile is a friction pile, it can be predicted that the reinforcing effect of micropile for the raft and the bearing capacity of micropiled raft may depend on the cohesion of upper soil layer depending on the pile conditions. However, existing studies have limitations in that they were conducted without taking this into account. However, existing studies have limitations as they have been conducted without considering these characteristics. Accordingly, this study investigated the reinforcing effect of micropile and the bearing characteristics of micropiled raft by varying the cohesion of upper soil layer and the stiffness of pile which affect the behavior of micropiled raft. In this results, the reinforcing effect of micropile on the raft also increased as the cohesion of soil layer increased, but the reinforcing effect of pile was more effective in ground conditions with decreased the cohesion. In addition, the relationship between the axial stiffness of micropile and the bearing capacity of micropiled raft was found to be a logarithmic linear relationship. It was found that the reinforcing effect of micropile can increase the bearing capacity of raft by 1.33~ 3.72 times depending on the cohesion of soil layer and the rigidity of pile.
헬리컬 파일(helical pile)은 한 개 이상의 나선형 원판을 중공형 축에 부착한 후 지반에 회전 관입시켜 지지력을 발현하게 하는 말뚝기초의 하나이다. 헬리컬 파일은 나선형 원판이 부착된 철제 축과 나선형 원판이 모두 지지력을 발휘하기 때문에 기존의 말뚝 지지력 식으로 헬리컬 파일의 지지력을 예측하기 위해서는 검증이 필요하다. 본 연구에서는 중소구경 헬리컬 파일의 지지력을 확인하기 위하여 김포 일대에서 헬리컬 파일의 축의 직경과 원판의 형상, 관입 깊이를 변화시키며 시공한 후 재하시험을 수행하였다. 현장시험은 동일한 조건에서 헬리컬 파일 축의 직경을 73mm, 114mm 두 가지로 시공하여 지지력을 측정, 비교하여 축의 직경이 헬리컬 파일의 지지력에 미치는 영향을 검토하였다. 같은 방법으로 원판의 개수가 1개, 3개로 제작된 헬리컬 파일 및 원판의 직경을 400mm에서 250mm으로 변화시키며 시공한 헬리컬 파일의 재하시험 결과를 바탕으로 원판의 형상이 지지력에 미치는 영향을 분석하였다. 또한 헬리컬 파일의 관입 심도를 3m에서 6m까지 설정하여 관입 심도에 따른 지지력을 비교하였다. 현장 시험 결과 원판의 개수가 증가할수록, 원판과 축의 직경이 증가할수록 헬리컬 파일의 지지력이 증가하는 경향을 보이나, 축의 직경은 헬리컬 파일의 지지력에 상대적으로 적은 영향을 미치는 것을 확인할 수 있으며, 원판의 형상이 지지력에 미치는 영향이 상대적으로 큰 것으로 판단된다.
Physical model tests were first performed to investigate the failure pattern of multiple pillar-roof support system. It was observed in the physical model tests, pillars were design with the same mechanical parameters in model #1, cracking occurred simultaneously in panel pillars and the roof above barrier pillars. When pillars 2 to 5 lost bearing capacity, collapse of the roof supported by those pillars occurred. Physical model #2 was design with a relatively weaker pillar (pillar 3) among six pillars. It was found that the whole pillar-roof system was divided into two independent systems by a roof crack, and two pillars collapse and roof subsidence events occurred during the loading process, the first failure event was induced by the pillars failure, and the second was caused by the roof crack. Then, for a multiple pillar-roof support system, three types of failure patterns were analysed based on the condition of pillar and roof. It can be concluded that any failure of a bearing component would cause a subsidence event. However, the barrier pillar could bear the transferred load during the stress redistribution process, mitigating the propagation of collapse or cutting the roof to insulate the collapse area. Importantly, some effective methods were suggested to decrease the risk of catastrophic collapse, and the deep-hole-blasting was employed to improve the stability of the pillar and roof support system in a room and pillar mine.
갭색법(gap & sag method)은 선박 건조과정에서 축을 조립하기 전 최종적으로 축이 축계정렬 설계치와 동일한 위치에 거치되었는지의 여부를 확인하기 위해 사용되고 있는 방법이며, 조립 전 프로펠러축을 기준축으로 하여 양 축의 플랜지에서 축 자중에 의해 발생하는 갭색값을 통해 나머지 축계의 위치를 순차적으로 확정해 나간다. 만일 설계치와 다르게 기준축이 거치되는 경우 연쇄적으로 나머지 축의 거치에 영향을 주게 된다. 또한, 축 조립 후 검증과정에서 측정된 베어링 반력이 설령 설계치를 만족하더라도 선미관 후부측에서의 프로펠러축과 베어링간 상대적경사각을 추정할 수 없게 됨으로써 결과적으로 축계의 안정성에 부정적인 영향을 미칠 수 있다. 이러한 문제를 해결하기 위하여 본 연구에서는 실제 선미관 베어링 발열 및 개방검사 사례를 통해 선미관 베어링 유효지지점에 관한 이론계산 및 실측치분석 연구를 수행하고 이를 바탕으로 축계 정렬오차를 최소화하기 위한 축계 시공방법을 제안하였다.
터보/컴프레셔(Turbo compressor)용 틸팅 패드 저널 베어링(Tilting pad journal bearing)은 고속, 고하중의 주축(Rotor)을 지지하는 역할을 하며, 화이트 메탈(White metal)이 대표적인 소재로 널리 사용되어왔다. 그러나 예기치 않은 윤활유 공급 중단 상황(Oil cut situation) 또는 베어링과 주축 사이에 유막(Oil film)이 제대로 형성되지 않을 경우, 기존의 화이트 메탈 베어링은 융착(Seizure) 현상에 의해 바로 정지하게 되고 주축에 심각한 손상을 유발한다. 이러한 융착 문제를 해결하기 위해 기존의 화이트 메탈에 비해 높은 비강성, 비강도 그리고 뛰어난 마찰 특성(Tribological characteristic)을 가지는 탄소섬유 강화 복합재료(Carbon fiber reinforced composite)가 틸팅 패드 저널 베어링에 사용될 수 있다. 본 연구에서는 고 내열성 탄소섬유/에폭시 복합재료 틸팅 패드 저널 베어링의 오일공급 중단 상황에서의 내구성에 대한 연구를 진행하였다. 이를 위해 상온 및 오일공급 중단상황의 고온에서 인장, 압축, 전단 등의 기초적인 복합재료 물성 실험을 진행하였고, 복합재료 틸팅 패드 저널 베어링에 있어 가장 중요한 물성인 층간 계면 강도를 측정하기 위해 Short Beam Shear 실험을 진행 하였다. 오일 공급 중단 상황에서 복합재료 틸팅 패드 저널 베어링의 파손(Failure) 가능성을 알아보기 위해 유한 요소 해석(Finite element analysis)을 진행함으로써 베어링 표면에 가해지는 최대 응력을 도출하였고, 해석 결과와 물성 시험으로부터 측정된 강도 값을 이용하여 Tsai-Wu Failure index를 계산하였다. 해석 결과를 검증하기 위해 산업용 테스트 벤치를 이용하여 탄소섬유/에폭시 복합재료로 제조된 틸팅 패드 저널 베어링의 오일 공급 중단 실험을 진행하였다.
전동기는 산업 전 분야에 걸쳐 다양하게 사용되는 회전기기로서, 소형화, 경량화, 고속화하는 추세에 있다. 이는 전동기 프레임의 구조강성을 약화시키고, 축계 위험속도를 낮춤으로써 진동에 취약한 구조를 가지게 된다. 회전체 진동 관련 규정 중 API 684 에서는 베어링 지지강성이 베어링 강성에 비해 3.5 배 이하인 경우 베어링 지지강성이 위험 속도 해석 모델에 포함되어야 함을 명시하고 있다. 산업 현장에서는 베어링 지지강성을 정확하게 산출하기 어려워 이를 고려하지 않고 회전체를 설계하는 경우가 많아 실제 조건에서 예측하지 못한 진동 문제가 발생할 가능성이 있다. 본 논문에서는 전동기 베어링 하우징 및 프레임에 대한 가진 시험을 통해 얻은 주파수 응답함수의 실수부를 분석하여 베어링 지지강성을 추출하는 방법을 제시하였다. 이를 바탕으로 유한요소 해석모델을 이용하여 베어링 지지강성을 해석적으로 예측하는 기법을 정립하였다. 추출된 베어링 지지강성을 축계 해석 모델에 포함하여 베어링 지지강성 포함 유무에 따른 축계 위험속도 및 안정성을 비교하였다. 그 결과 베어링 지지강성을 포함한 경우, 보다 정확한 위험속도 및 진동응답 수준을 예측할 수 있음을 확인하였다.
The effects of flexibilities of supporting structures on shaft alignment are growing as ship sizes are Increasing mainly for container carrier and LNG carrier. But, most of classification societies not only do not suggest any quantitative guidelines about the flexibilities but also do not have shaft alignment design program considering the flexibility of supporting structures. A newly developed program, which is based on innovative shaft alignment technologies including nonlinear elastic multi-support bearing concept and hull deflection database approach, has S basic modules : 1)fully automated finite element generation module, 2) hull deflection database and it's mapping module on bearings, 3) squeezing and oil film pressure calculation module, 4) optimization module and 5) gap & sag calculation module. First module can generate finite element model including shafts, bearings, bearing seats, hull and engine housing without any misalignment of nodes. Hull deflection database module has built-in absolute deflection data for various ship types, sizes and loading conditions and imposes the transformed relative deflection data on shafting system. The squeezing of lining material and oil film pressures, which are relatively solved by Hertz contact theory and built-in hydrodynamic engine, can be calculated and visualized by pressure calculation module. One of the most representative capabilities is an optimization module based on both DOE and Hooke-Jeeves algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.