• Title/Summary/Keyword: Bearing Design

Search Result 2,034, Processing Time 0.032 seconds

Determination of cross section of composite breakwaters with multiple failure modes and system reliability analysis (다중 파괴모드에 의한 혼성제 케이슨의 단면 산정 및 제체에 대한 시스템 신뢰성 해석)

  • Lee, Cheol-Eung;Kim, Sang-Ug;Park, Dong-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.827-837
    • /
    • 2018
  • The stabilities of sliding and overturning of caisson and bearing capacity of mound against eccentric and inclined loads, which possibly happen to a composite caisson breakwaters, have been analyzed by using the technique of multiple failure modes. In deterministic approach, mathematical functions have been first derived from the ultimate limit state equations. Using those functions, the minimum cross section of caisson can straightforwardly be evaluated. By taking a look into some various deterministic analyses, it has been found that the conflict between failure modes can be occurred, such that the stability of bearing capacity of mound decreased as the stability of sliding increased. Therefore, the multiple failure modes for the composite caisson breakwaters should be taken into account simultaneously even in the process of deterministically evaluating the design cross section of caisson. Meanwhile, the reliability analyses on multiple failure modes have been implemented to the cross section determined by the sliding failure mode. It has been shown that the system failure probabilities of the composite breakwater are very behaved differently according to the variation of incident waves. The failure probabilities of system tend also to increase as the crest freeboards of caisson are heightening. The similar behaviors are taken place in cases that the water depths above mound are deepening. Finally, the results of the first-order modal are quite coincided with those of the second-order modal in all conditions of numerical tests performed in this paper. However, the second-order modal have had higher accuracy than the first-order modal. This is mainly due to that some correlations between failure modes can be properly incorporated in the second-order modal. Nevertheless, the first-order modal can also be easily used only when one of failure probabilities among multiple failure modes is extremely larger than others.

A Experimental Study on the Structural Performance of Column Spliceswith Metal Touch Subjected to Axial Force and Bending Moment (압축력과 휨모멘트를 받는 메탈 터치된 기둥 이음부의 구조성능에 대한 실험적 연구)

  • Hong, Kap Pyo;Kim, Seok Koo;Lee, Joong Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.633-644
    • /
    • 2008
  • The structural framework design uses high-strength bolts and welding in column splices. However, for the column under high compression, the number of the required high-strength bolts can be excessive and the increase of welding results in difficulty of quality inspection, the transformation of the structural steels, and the increase of erection time. According to the AISC criteria, when columns have bearing plates, or they are finished to bear at splices, there shall be sufficient connections to hold all parts securely in place. The Korean standard sets the maximum 25% of the load as criteria. Using direct contact makes it possible to transfer all compressive force through it. The objective of this study is to examine the generally applied stress path mechanism of welded or bolted columns and to verify the bending moment and compression transfer mechanism of the column splice according to metal touch precision. For this study,22 specimens of various geometric shapes were constructed according to the change in the variables for each column splice type, which includes the splice method, gap width, gap axis, presence or absence of splice material, and connector type. The results show that the application of each splice can be improved through the examination of the stress path mechanism upon metal contact. Moreover, the revision of the relative local code on direct contact needs to be reviewed properly for the economics and efficiency of the splices.

Pullout Characteristics of MC Anchor in Shale Layer (셰일지반에 설치된 MC앵커의 인발특성)

  • Lee, Bongjik;Kim, Josoon;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2012
  • In this study, the research on MC anchor has been developed as composite type has done. MC anchor exerts bearing pressure on pre-bored hole where the end fixing device is expanded. Therefore, the uplift capacity is to be increased and it has the characteristics that the anchor body is not eliminated from the ground even if the grouting is not carried out properly. Furthermore, it reduces the loss of tension and raises the construction availability by inserting the reinforced bar as well as the anchor cable, while it can improve the long-term stability because the nail is expected to play the role when the loss of the anchor cable is occurred in a long-term. However, because the resistance mechanism of the compound anchor such as MC anchor is different from friction anchor, the estimation method of the uplift capacity by the frictional force of the ground and the grout is not proper. Particularly, in domestic cases, the problem to overestimate or underestimate the uplift capacity is expected because the design method considering the soil characteristics about the compound anchor has not been developed. Therefore, in this study, in order to evaluate the characteristics of MC anchor and a kind of compound anchor, we measured the uplift, the tension and the creep by nine anchors tests in shale ground that the fluctuation of the strength is great. In addition, we analyzed the test result comparing to the result of the general friction anchor and evaluated the characteristics of MC anchor movement to gather the results. As a result of the test, we found the effect that the uplift capacity is increased in shale ground comparing to the general friction anchor.

A Study for Predicting Adfreeze Bond Strength from Shear Strength of Frozen Soil (동결토 전단강도를 활용한 동착강도 산정에 관한 연구)

  • Choi, Chang-Ho;Ko, Sung-Gyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.13-23
    • /
    • 2011
  • Bearing capacity of pile foundations in cold region is dominated by adfreeze bond strength between surrounding soil and pile perimeter. It denotes that adfreeze bond strength is the most important design parameter for foundations in cold region. Adfreeze bond strength is affected by various factors like 'soil type', 'frozen temperature', 'normal stress acting on soil/pile interface', 'loading rate', 'roughness of pile surface', etc. Several methods have already been proposed to estimate adfreeze bond strength during past 50 years. However, most methods have not considered the effect of normal stress for adfreeze bond strength. In this study, both freezing temperature and normal stress have been controlled as primary factors affecting adfreeze bond strength. A direct shear box was used to measure adfreeze bond strength between sand and aluminum under different temperature conditions. Based on the test results, the relation between shear strength of frozen sand and adfreeze bond strength have been investigated. The test results showed that both of shear strength and adfreeze bond strength tend to increase with decreasing frozen temperature or increasing confining pressure. The ratio of shear strength and adfreeze bond strength, expressed as $r_s$, decreased initially frozen section but increased at much lower frozen temperature and there were uniform intervals under the different normal stress conditions. A method for predicting adfreeze bond strength using $r_s$ has finally been proposed in this study.

Investigation of Stiffness Characteristics of Subgrade Soils under Tracks Based on Stress and Strain Levels (응력 및 변형률 수준을 고려한 궤도 흙노반의 변형계수 특성 분석)

  • Lim, Yujin;Kim, DaeSung;Cho, Hojin;Sagong, Myoung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.386-393
    • /
    • 2013
  • In this study, the so-called repeated plate load bearing test (RPBT) used to get $E_{v2}$ values in order to check the degree of compaction of subgrade, and to get design parameters for determining the thickness of the trackbed foundation, is investigated. The test procedure of the RPBT method is scrutinized in detail. $E_{v2}$ values obtained from the field were verified in order to check the reliability of the test data. The $E_{v2}$ values obtained from high-speed rail construction sites were compared to converted modulus values obtained from resonant column (RC) test results. For these tests, medium-size samples composed of the same soils from the field were used after analyzing stress and strain levels existing in the soil below the repeated loading plates. Finite element analyses, using the PLAXIS and ABAQUS programs, were performed in order to investigate the impact of the strain influence coefficient. This was done by getting newly computed $I_z$ to get the precise strain level predicted on the subgrade surface in the full track structure; under wheel loading. It was verified that it is necessary to use precise loading steps to construct nonlinear load-settlement curves from RPBT in order to get correct $E_{v2}$ values at the proper strain levels.

Shear Behavior of Reinforced Concrete Deep Beams with Web Openings (개구부를 갖는 철근콘크리트 깊은 보의 전단거동)

  • 이진섭;김상식
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.619-628
    • /
    • 2001
  • In building construction, openings of the story-height deep beams are usually required for accessibility and service lines such as air conditioning ducts, drain pipes and electric units. It is known that the main parameters affecting the load bearing capacity of deep beams with web openings are size, shape, location and reinforcements of openings. However, there have been no pertinent theories and national design codes for predicting ultimate shear strength of reinforced concrete deep beams with web openings. In this study, the shear behavior of simply supported reinforced concrete deep beams with web openings subject to concentrated loads has been scrutinized experimentally. A total of 34 specimens, the geometry of openings, its reinforcements and shear span to depth ratio, being taken as the experimental variables, has been cast and tested in the laboratory. The effects of these structural parameters on the shear strength and crack initiation and propagation have been carefully checked and analyzed. From the tests, it has been observed that the failures of all specimens were due to shear mechanism and the ultimate strength of specimens varies according to the location of openings, by which the formation of compression struts between the loading points and supports are deterred. All of the test results of specimens have been compared with the formulas proposed by previous researchers. The results were closely coincident with the formulas given by Ray and Kong's equation except for some X series specimens having a larger dimension of openings beyond the geometric limits of proposed equations.

A Study on the Symbolism of Buttns of 18.19 Century (18.19세기 단추의 상징성에 관한 연구)

  • 강두옥;김진구
    • Journal of the Korean Society of Costume
    • /
    • v.18
    • /
    • pp.225-245
    • /
    • 1992
  • The button is a part of costume. But it has the symbolism of costume in itself and reflects the sociocultural phenomena. The purpose of this study is to clarify symbolism of button of eighteenth and nineteenth century which had been most popular. This study is based on the library research. Through this paper, I reached conclusions as follows. The symbolism of button is found in various ways. First, Aesthetics is found in material, color, design and type etc. of button. Especially Indian silver button of abstract type shows well distinctive aesthetics of Indians. Second, The material and the number of button vary with one's status and show off one's privilege. I England, there was the rule, in which the symbol of the King was a silver button with a figure of lion. The livery button represents his family to the nble and shows the meaning of obedience to the servant. Third, The button on uniform varies with ranks. This is prominent in a uniform of a soldier or a policeman. Fourth Material and craft of button show one's economic position. The button gives a Very good picture of what one's life was then. Precious button with gold, silver, and other jewels is an index to one's property. Fifth, The button of political event is used for election, which shows the face and the name of runner. Besides that, there were buttons designed for the flag or the slogan for political event. Sixth, The button of social event reflects a social phase of life in war or revolution, for example, it satirizes the burning of the Bastille in the French Revolution, or the taxpayer bearing the burden. Seventh, the buttons that symbolize a historic event are made to commemorante an epochal and critical occurrence or an important person's birth, death, visit to some place, etc., Eighth, there were well-known persons, for example, a president, a king, a queen, a singer, or an artist in the buton of personality. Nineth, The button of one's company shows one's community in figures or pictures, that is, this button is used as a symbol one's community. Tenth, The button varies with the development of science and technology. It gives a very good picture of what it was and what the technological level was. Eleventh, The buttons that symmbolize on occupation most impressively are uniform buttons. Symbolic marks related with a particular occupation are carved on the buttons of compary employees' uniforms. Twelfth, Various natural phenomena are designed to appear on buttons, Some express themselves simply as they are, and others appear as a symbolic form such as environmental relationship between men and nature, four seasons, a constellation and all other natural things occurring during a year. Finally, The button of rebus is a motto expressed by a combination with objects figures, letters, words, or phrases.

  • PDF

Luminescent Lanthanide Complexes for Advanced Photonics Applications

  • Eom, Yu Kyung;Ryu, Jung Ho;Kim, Hwan Kyu
    • Rapid Communication in Photoscience
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Luminescent lanthanide complexes have been overviewed for advanced photonics applications. Lanthanide(III) ions ($Ln^{3+}$) were encapsulated by the luminescent ligands such as metalloporphyrins, naphthalenes, anthracene, push-pull diketone derivatives and boron dipyrromethene(bodipy). The energy levels of the luminescent ligands were tailored to maintain the effective energy transfer process from luminescent ligands to $Ln^{3+}$ ions for getting a higher optical amplification gain. Also, key parameters for emission enhancement and efficient energy transfer pathways for the sensitization of $Ln^{3+}$ ions by luminescent ligands were investigated. Furthermore, to enhance the optophysical properties of novel luminescent $Ln^{3+}$ complexes, aryl ether-functionalized dendrons as photon antennas have been incorporated into luminescent $Ln^{3+}$ complexes, yielding novel $Ln^{3+}$-cored dendrimer complex such as metalloporphyrins, naphthalenes, and anthracenes bearing the Fr$\acute{e}$chet aryl-ether dendrons, namely, ($Er^{3+}-[Gn-Pt-Por]_3$ (terpy), $Er^{3+}-[Gn-Naph]_3$(terpy) and $Er^{3+}-[Gn-An]_3$(terpy)). These complexs showed much stronger near-IR emission bands at 1530 nm, originated from the 4f-4f electronic transition of the first excited state ($^4I_{13/2}$) to the ground state ($^4I_{15/2}$) of the partially filled 4f shell. A significant decrease in the fluorescence of metalloporphyrins, naphthalenes and anthracene ligand were accompanied by a strong increase in the near IR emission of the $Ln^{3+}$ ions. The near IR emission intensities of $Ln^{3+}$ ions in the lanthanide(III)-encapsulated dendrimer complexes were dramatically enhanced with increasing the generation number (n) of dendrons, due to the site-isolation and the light-harvesting(LH) effects. Furthermore, it was first attempted to distinguish between the site-isolation and the light-harvesting effects in the present complexes. In this review, synthesis and photophysical studies of inert and stable luminescent $Ln^{3+}$ complexes will be dealt for the advanced photonics applications. Also, the review will include the exploratory investigation of the key parameters for emission enhancement and the effective energy transfer pathways from luminescent ligands to $Ln^{3+}$ ions with $Ln^{3+}$-chelated prototype complexes.

Performance Evaluation of a Driving Power Transmission System for 50 kW Narrow Tractors

  • Hong, Soon-Jung;Ha, Jong-Kyou;Kim, Yong-Joo;Kabir, Md. Shaha Nur;Seo, Young Woo;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • Purpose: The development of compact tractors that can be used in dry fields, greenhouses, and orchards for pest control, weeding, transportation, and harvesting is necessary. The development and performance evaluation of power transmission units are very important when it comes to tractor development. This study evaluates the performance of a driving power transmission unit of a 50 kW multi-purpose narrow tractor. Methods: The performance of the transmission and forward-reverse clutch, which are the main components of the driving power transmission unit of multi-purpose narrow tractors, was evaluated herein. The transmission performance was evaluated in terms of power transmission efficiency, noise, and axle load, while the forward-reverse clutch performance was evaluated in terms of durability. The transmission's power transmission efficiency accounts for the measurement of transmission losses, which occur in the transmission's gear, bearing, and oil seal. The motor's power was input in the transmission's input shaft. The rotational speed and torque were measured in the final output shaft. The noise was measured at each speed level after installing a microphone on the left, right, and upper sides. The axle load test was performed through a continuous equilibrium load test, in which a constant load was continuously applied. The forward-reverse clutch performance was calculated using the engine torque to axle torque ratio with the assembled engine and transmission. Results: The loss of power in the transmission efficiency test of the driving power unit was 6.0-9.7 kW based on all gear steps. This loss of horsepower was equal to 11-18% of the input power (52 kW). The transmission efficiency of the driving power unit was 81.5-89.0%. The noise of the driving power unit was 50-57 dB at 800 rpm, 70-77 dB at 1600 rpm, and 76-83 dB at 2400 rpm. The axle load test verified that the input torque and axle revolutions were constant. The results of the forward-reverse clutch performance test revealed that hydraulic pressure and torque changes were stably maintained when moving forward or backward, and its operation met the hydraulic design standards. Conclusions: When comprehensively examined, these research results were similar to the main driving power transmission systems from USA and Japan in terms of performance. Based on these results, tractor prototypes are expected to be created and supplied to farmhouses after going through sufficient in-situ adaptability tests.

A Study on Stability and Economic feasibility according to Height on the MSE Wall with Pacing Panel (고속도로 도로부에 시공된 패널식 보강토 옹벽의 높이별 안전율과 경제성 검토)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.54-63
    • /
    • 2018
  • In this study, the stability and economic feasibility of a MSE (Mechanically stability earth) wall with a pre-cast concrete pacing panel was investigated for a standard section of highway. Based on the design criteria, the MSE walls of the panel type were designed considering the load conditions of the highway, such as the dead load of the concrete pavement, traffic load, and impact load of the barrier. The length of the ribbed metal strip was arranged at 0.9H according to the height of the MSE walls. Because the length of the reinforcement was set to 0.9H according to the height of the MSE wall, the external stability governed by the shape of the reinforced soil was not affected by the height increase. The factor of safety (FOS) for the bearing capacity was decreased drastically due to the increase in self-weight according to the height of the MSE wall. As a result of examining the internal stability according to the cohesive gravity method, the FOS of pullout was increased and the FOS of fracture was decreased. As the height of the MSEW wall increases, the horizontal earth pressure acting as an active force and the vertical earth pressure acting as a resistance force are increased together, so that the FOS of the pullout is increased. Because the long-term allowable tensile force of the ribbed metal strip is constant, the FOS of the fracture is decreased by only an increase in the horizontal earth pressure according to the height. The panel type MSE wall was more economical than the block type at all heights. Compared to the concrete retaining wall, it has excellent economic efficiency at a height of 5.0 m or more.