• 제목/요약/키워드: Bearing Defect

검색결과 118건 처리시간 0.028초

구름 베어링의 결함 주파수 규명을 위한 방향 스펙트럼의 이용 (Identification of Defect Frequencies in Rolling Element Bearing Using Directional Spectra of Vibration Signals)

  • 박종포;이종원
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.393-400
    • /
    • 1999
  • Defect frequencies of rolling element bearings are experimentally investigated utilizing the two-sided directional spectra of the complex-valued vibration signals measured from the outer ring of defective bearings. The directional spectra make it possible to discern backward and forward defect frequencies. The experimental results show that the directional zoom spectrum is superior to the conventional spectrum in identification of bearing defect frequencies, in particular the inner race defect frequencies.

  • PDF

3차원 강소성 유한요소법을 이용한 환상압연공정중 형상결함의 예측 (Prediction of Defect Formation in Ring Rolling by the Three-Dimensional Rigid-Plastic Finite Element Method)

  • 문호근;정재헌;박창남;전만수
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1492-1499
    • /
    • 2004
  • In this paper, defect formation in ring rolling is revealed by computer simulation of ring rolling processes. The rigid-plastic finite element method is employed for this study. An analysis model having relatively fine mesh system near the roll gap is used for reducing the computational time and a scheme of minimizing the volume change is applied. The formation of the central cavity formation defect in ring rolling of a taper roller bearing outer race and the polygonal shape defect in ring rolling of a ball bearing outer race has been simulated. It has been seen that the results are qualitatively good with actual phenomena.

HFRT 기법을 이용한 결함 볼베어링의 진동분석 (Vibration Analysis of Ball Bearing Fault using HFRT)

  • 김예현;강병용;김동일;장호경
    • 한국음향학회지
    • /
    • 제14권2호
    • /
    • pp.92-100
    • /
    • 1995
  • 본 연구에서는 결함이 있는 볼베어링을 모델링하여 결함의 형태별로 진동분석을 하였다. 진동측정은 단일결함과 복합결함이 있는 볼베어링에 대하여 결함위치와 회전속도 변화에 대한 진동신호를 측정하고, 신호 성분들은 고주파 공진기법을 이용해 FFT시켰다. 실험결과 단일결함과 복합결함이 있을 때 결함으로 인해 발생하는 주파수는 결함 특성 주파수와 그 배수의 고조파 성분 피크들이 나타남을 확인하였다. 고주파 공진기법을 이용한 신호처리는 결함의 유무 뿐만 아니라 결함의 부위도 진단이 가능함을 알 수 있었다.

  • PDF

Scalogram과 Switchable 정규화 기반 합성곱 신경망을 활용한 베이링 결함 탐지 (Scalogram and Switchable Normalization CNN(SN-CNN) Based Bearing Falut Detection)

  • ;김윤수;석종원
    • 전기전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.319-328
    • /
    • 2022
  • 베어링은 기계가 작동할때 중요한 역할을 한다. 때문에, 베어링에 결함이 발생하면 기계전체의 치명적인 결함을 발생시킨다. 그러므로 베어링 결함은 조기에 발견되어야한다. 본 논문에서는 연속 웨이블릿 변환과 Switchable 정규화를 기반으로 한 합성곱 신경망(SN-CNN)을 이용한 방법을 베어링 결함 감지 모델에 대해 설명한다. 모델의 정확도는 Case Western Reserve University(CWRU) 베어링 데이터 집합을 사용하여 측정되었다. 또한 배치 정규화(BN, Batch Normalization)[1] 방법과 스펙트로그램 이미지가 모델 성능의 비교를 위해 사용되었다.

수직축풍력발전기 하부베어링용 테이퍼롤러베어링의 결함진단시스템 개발 (Study on the Diagnosis System of Taper Roller Bearing used on the Lower Bearing of V.A.W.T.)

  • 이성근;박영일;이희원;김영석
    • 한국안전학회지
    • /
    • 제11권2호
    • /
    • pp.42-51
    • /
    • 1996
  • Taper roller bearing is used on rotating shaft where radial and thrust loads are attended. To avoid the sudden failure and maintain the good condition of rotating machinery it is necessary to monitor the condition of bearing and diagnose the defect of bearing. In this study the diagnosis program of taper roller bearing which is used on the lower bearing of V.A.W.T. (Vertical Axis Wind Turbine) is developed. By plenty of test the database is constructed and by Gaussian distribution obtained from database the defect probability of bearing is calculated.

  • PDF

AE 신호 및 신경회로망을 이용한 공작기계 주축용 베어링 결함검출 (Detection of Main Spindle Bearing Defects in Machine Tool by Acoustic Emission Signal via Neural Network Methodology)

  • 정의식
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.46-53
    • /
    • 1997
  • This paper presents a method of detection localized defects on tapered roller bearing in main spindle of machine tool system. The feature vectors, i.e. statistical parameters, in time-domain analysis technique have been calculated to extract useful features from acoustic emission signals. These feature vectors are used as the input feature of an neural network to classify and detect bearing defects. As a results, the detection of bearing defect conditions could be sucessfully performed by using an neural network with statistical parameters of acoustic emission signals.

  • PDF

반경하중을 받고있는 결함 볼베어링의 진동분석 (Vibration Analysis for the Defective Ball Bearing under Radial Loads)

  • 강병용;이우섭;장호경;김예현
    • 한국음향학회지
    • /
    • 제16권4호
    • /
    • pp.21-28
    • /
    • 1997
  • 본 연구에서는 빈경하중과 축회전 속도를 변화시켜 가며 하중으로 인한 베어링의 부하-변위량 특성을 Harris 이론과 비교분석하였다. 실험결과 결함이 없는 경우 하중이 적을 때는 Harris이론과 비교적 잘 일치하나, 하중이 증가할 수록 구동축의 변곡, 볼베어링 하중의 불균형 등의 영향을 받아 이론값과 차이를 보였다. 반경방향 하중이 있는 단일결함과 다중결함의 경우 하중이 증가함에 따라 변위량의 변화는 축심변위량 보다 반경변위량이 더욱 커지게 된다는 것을 알았다. 베어링의 결함상태에 따라 하중과 변위량의 기울기인 부하-변위량 특성을 구함으로써 볼베어링의 결함유무를 검출하였다.

  • PDF

기어박스에서의 베어링 결함 진단 (Bearing Fault Diagnostics in a Gearbox)

  • 김흥섭;이상권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.611-616
    • /
    • 2002
  • Bearing diagnostics is difficult in a gearbox because bearing signals are masked by the strong gear signals. Self adaptive noise cancellation(SANC) is useful technique to seperate bearing signals from gear signals. While gear signals are correlated with a long correlation length, bearing signals are not correlated with a short length. SANC seperates two components on the basis of correlation length. Then we can find defect frequency component in the envelope spectrum of the bearing signals.

  • PDF

웨이블릿변환이 접목된 포락처리를 이용한 저속 회전하는 구름요소베어링 결함 진단 (Low Speed Rolling Bearing Fault Detection Using AE Signal Analyzed By Envelop Analysis Added DWT)

  • 김병수;김원철;구동식;김재구;최병근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.672-678
    • /
    • 2009
  • Acoustic Emission (AE) technique is a non-destructive testing method and widely used for the early detection of faults in rotating machines in these days, because the sensitivity of AE transducers is higher than normal accelerometers. So it can detect low energy vibration signals. The faults in the rotating machines are generally occurred at bearings and gearboxes which are the principal parts of the machines. It was studied to detect the bearing faults by envelop analysis in several decade years. And the researches showed that AE had a possibility of the application in condition monitoring system(CMS) using the envelope analysis for the rolling bearing. And peak ratio (PR) was developed for expression of the bearing condition in condition monitoring system using AE. Noise level is needed to reduce to take exact PR value because the PR is calculated from total root mean square (RMS) and the harmonics peak levels of the defect frequencies of the bearing. Therefore, in this paper, the discrete wavelet transform (DWT) was added in the envelope analysis to reduce the noise level in the AE signals. And then, the PR was calculated and compared with general envelope analysis result and the result of envelope analysis added the DWT. In the experiment result about inner fault of bearing, defect frequency was difficult to find about only envelop analysis. But it's easy to find defect frequency after wavelet transform. Therefore, Envelop analysis added wavelet transform was useful method for early detection of default in signal process.