• 제목/요약/키워드: Bearing Damping

검색결과 342건 처리시간 0.029초

볼-유정압 복합베어링을 갖는 고정밀 주축의 회전특성에 관한 연구 (Rotational Characteristics of High Precision Spindle Unit with Ball-Hydrostatic Bearing)

  • 이찬홍;이후상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.663-667
    • /
    • 2000
  • The spindle unit is core parts in high precision machine tools. Diverse static and dynamic charateristics of spindle unit are needed for special purpose of machine tools. Specially, high damping ability may be very useful to high precision and high speed spindle unit. But commercial bearing system has very low damping value and high stiffness. In this paper, the combined bearing system with ball-hydrostatic bearing is suggested for high damping spindle unit. The suggested bearing system has 30% damping ability more than general ball bearing's. The average rotational accuracy of spindle with combined bearing in working speed is 24% better than with ball bearing. The unbalance rotating experiment in spindle show that rotating error with combined bearing is only half value of with ball bearing.

  • PDF

가진 주파수가 틸팅패드 저어널베어링의 강성 및 감쇠계수에 미치는 영향 (Effects of Exciting Frequency on the Stiffness and Damping Coefficients in a Tilting Pad Journal Bearing)

  • 하현천;양승헌;김호종
    • Tribology and Lubricants
    • /
    • 제14권1호
    • /
    • pp.14-22
    • /
    • 1998
  • This paper describes the effects of exciting frequency on the stiffness and damping coefticients of a 5-pad tilting pad journal bearing, LOP (load on pad) type. The stiffness and damping coefficients are investigated experimentally under the different values of exciting frequency, bearing load and shaft speed. These coefficients are estimated by measuring the response of the relative displacement between the bearing and the shaft and acceleration of the bearing due to the known exciting loads acting on the bearing. In order to analysis the response of exciting load, displacement and acceleration, a FFT analyzer is used. It is shown that the variation of exciting frequency has a little effect on both the stiffness and damping coefficients. Both the stiffness and damping coefficients in the loading direction are decreased by the increase of shaft speed but increased by the increase of bearing load.

틸팅패드 저널베어링의 유막 강성 및 감쇠계수에 대한 실험적 연구 (Experimental Study on the Stiffness and Damping Coefficients of a Tilting Pad Journal Bearing)

  • 하현천;양승헌
    • 한국유체기계학회 논문집
    • /
    • 제2권2호
    • /
    • pp.32-38
    • /
    • 1999
  • An experimental study is performed to investigate the frequency effects of the excitation force on the linear stiffness and damping coefficients of a LOP (load on pad) type five-pad tilting pad journal bearing with the diameter of 300.91 mm and the length of 149.80 mm. The main parameter of interest in the present work is excitation frequency to shake the test bearing. The excitation frequency is controlled independently, using orthogonally mounted hydraulic exciters. The relative movement between the bearing and shaft, and the acceleration of the bearing casing are measured as a function of excitation frequency using the different values of bearing load and shaft speed. Measurements show that the variation of excitation frequency has quite a little effect on both stiffness and damping coefficients. Both direct stiffness and damping coefficients in the direction of bearing load decrease by the increase of shaft speed, but increase with the bearing load.

  • PDF

틸팅패드 저어널 베어링의 유막 강성 및 감쇠 계수에 대한 실험적 연구 (Experimental Study on the Stiffness and Damping Coefficients of a Tilting Pad Journal Bearing)

  • 하현천;양승헌
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.173-179
    • /
    • 1998
  • An experimental study is performed to investigate the frequency effects of the excitation force on the linear stiffness and damping coefficients of a LOP (load on pad) type five-pad tilting pad journal bearing with the diameter of 300.91 mm and the length of 149.80 mm. The main parameter of interest in the present work is excitation frequency to shake the test bearing. The excitation frequency is controlled independently, using orthogonally mounted hydraulic exciters. The relative movement between the bearing and shaft, and the acceleration of the bearing casing are measured as a function of excitation frequency using the different values of bearing load and shaft speed. Measurements show that the variation of excitation frequency has quite a little effect on both stiffness and damping coefficients. Both direct stiffness and damping coefficients in the direction of bearing load decrease by the increase of shaft speed, but increase with the bearing load.

  • PDF

고감쇠 주축 시스템을 위한 베어링의 복합배열에 관한 연구 (A Combined Bearing Arrangement for High Damping Spindle Systems)

  • Lee, C.H.
    • 한국정밀공학회지
    • /
    • 제13권10호
    • /
    • pp.139-145
    • /
    • 1996
  • The machining accuracy and performance is largely influenced by the static, dynamic and thermal characteristics of spindle systems in machine tools, because the spindle system is a intermedium for cutting force from tool and machine powef from motor. Large cutting force and power are transmitted by bearing with a point or line contact. So, the spindle system is the static and dynamic weakest point in machine structure. For improvement of static stiffness of spindle system can be changed design parameters, such as diameter of spindle, stiffness of bearing and bearing span. But for dynamic stiffness, the change of the design parameters are not useful. In this paper, the combined bearing arrangement is suggested for high damping spindle system. The combined bearing arrangement is composed of tandem double back to back arrangement type ball bearins and a high damping hydrostatic bearing. The variation of static deflection and amplitude in first natural frequency is evaluated with the location of hydrostatic bearing between front and rear ball bearing. The optimized location of hydrostatic bearing for high static and dynamic stiffness is determined rapidly and exactly using the mode shape and transfer function of spindle. The calculation of damping effect on vibration by unbalance of grinding wheel and pulley in optimized spindle system is carried out to verify the validity of the combined bearing arrangement. Finally, the simulation of grinding process show that the surface roughness of workpiece with high damping spindle system is 60% better than with ball bearing spindle system.

  • PDF

고속 회전 터보 기기용 포일 베어링의 불안정 진동 제진에 관한 연구 (A Study on the Suppression of Instability Whirl of a Foil Bearing for High-Speed Turbomachinery beyond the Bending Critical Speed)

  • 이용복;김태호;김창호;이남수;최동훈
    • 한국유체기계학회 논문집
    • /
    • 제5권3호
    • /
    • pp.7-14
    • /
    • 2002
  • A new foil bearing, ViscoElastic Foil Bearing(VEFB) is suggested with the need for a high damping foil bearing. Sufficient damping capacity is a key technical hurdle to super-bending-critical operation as well as widespread use of foil bearings into turbomachinery. The super-bending-critical operation of the conventional bump foil bearing and the VEFB is examined, as well as the structural dynamic characteristics. The structural dynamic test results show that the equivalent viscous damping of the VEFB is much larger than that of the bump bearing, and that the structural dynamic stiffness of the VEFB is comparable or larger than that of the bump bearing. The results of super-bending-critical operation of the VEFB indicate that the enhanced structural damping of the viscoelastic foil dramatically reduces the vibration near the bending critical speed. With the help of increased damping resulting from the viscoelasticity, the suppression of the asynchronous orbit is possible beyond the bending critical speed.

35 kWh급 플라이휠용 초전도 베어링의 댐핑 특성평가 (Damping Properties of a Superconductor Bearing in a 35 kWh Class Superconductor Flywheel Energy Storage System)

  • 박병준;정세용;한상철;한상진;이대화;한영희
    • Progress in Superconductivity
    • /
    • 제14권1호
    • /
    • pp.66-70
    • /
    • 2012
  • Superconductor flywheel energy storage system (SFESs) is an electro-mechanical battery with high energy storage density, long life, and good environmental affinity. SFESs have been developed for application to a regenerative power of train, the storage of distributed power sources such as solar and wind power, and a power quality improvement. As superconductor bearing is completely passive, it is not necessary to control a system elaborately but accurate analysis in mechanical properties of the HTS bearing is very important for application to SFESs. Stiffness and damping properties are the main index for evaluation the capacity of HTS bearings and make it possible to adjust rotordynamic properties while operating the rotor-bearing system. The superconductor bearing consists of a stator containing single grain YBCO bulks, a ring-type permanent magnet rotor with a strong magnetic field that can reach the bulk surface, and a bearing support for assembly to SFESs frame. In this study, we investigated the stiffness and damping properties of superconductor bearings in 35 kWh SFESs. Finally, we found that 35 kWh superconductor bearing has uniform stiffness properties depend on the various orientations of rotor vibration. We discovered total damping coefficient of superconductor bearing is affected by not only magnetic damping in superconductor bulk but also external damping in bearing support. From the results, it is confirmed that the conducted evaluation can considerably improve energy storage efficiency of the SFESs, and these results can be used for the optimal capacity of superconductor bearings of the SFESs.

Fe-Mn 제진금속을 적용한 교량용 교좌장치 (Application of Fe-Mn Damping Alloy for Divided Spherical Bearing in Bridge)

  • 한동운;김태훈;백진현;김정철;백승한;유문식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1024-1028
    • /
    • 2006
  • The Fe-Mn damping Alloys which combine a high damping capacity with good mechanical properties can provide attractive technical and economic solutions to problems involving fatigue, noise and vibration. This study is aimed at finding its applicability to divided spherical bearing in bridge. The results obtained are summarized as follows : 1) The specific damping capacity of the Fe-Mn damping alloy is superior to that of SM490B. 2) The divided spherical bearing manufactured Fe-Mn damping alloy passes the load test to confirm applicability of that in bridge.

  • PDF

고속 회전축 베어링 계의 외부 댐핑에 관한 연구 (A Study on the External Damping for High Speed Rotor-Bearing System)

  • 한동철;정선모
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.698-705
    • /
    • 1986
  • 본 연구에서는 윤활이론에 따라 명확히 계산되고 그 신빙성이 실험적으로 검 증된 "동압유막 댐퍼"의 감쇠계수를 이용하여 외부댐핑을 갖는 회전축-구름베어링계와 회전축-저어널베어링계의 진동특성을 해석하고저 한다. 또한 해석결과를 토대로 회 전축계의 진동특성에 미치는 특성수 및 설계변수를 명확히 도출하여 동특성을 고려한 회전축계의 최적설계에 기여하고저 한다. 기여하고저 한다.

공기베어링의 능동제어에 관한 연구 (A Study on the Active Control of Air Bearing)

  • 이정배;김경웅
    • 대한기계학회논문집A
    • /
    • 제20권8호
    • /
    • pp.2501-2507
    • /
    • 1996
  • In this paper actively controlled air bearing is investigated to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled air beairng is composed of an air bearing, a gap sensor, a controller, and a piezo actuator. By controlling the position of air bearing with piezo actuator, the position of floating object is controlled. In this study the proportional-Integral-Derivative controller is employed. Active air bearing is investigated numerically and experimentally. There is good agreement between the simulation and the experimental results. It is shown that the stiffness and damping characteristics and positioning experimental results. It is shown that the stiffness and damping characteristics and positioning accuracy of air bearing can be improved by means of adopting actively controlled air bearing.