• Title/Summary/Keyword: Beam-divergence angle

Search Result 31, Processing Time 0.027 seconds

Performance Analysis of M-ary Optical Communication over Log-Normal Fading Channels for CubeSat Platforms

  • Lim, Hyung-Chul;Yu, Sung-Yeol;Sung, Ki-Pyoung;Park, Jong Uk;Choi, Chul-Sung;Choi, Mansoo
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.219-228
    • /
    • 2020
  • A CubeSat platform has become a popular choice due to inexpensive commercial off-the-shelf (COTS) components and low launch cost. However, it requires more power-efficient and higher-data rate downlink capability for space applications related to remote sensing. In addition, the platform is limited by the size, weight and power (SWaP) constraints as well as the regulatory issue of licensing the radio frequency (RF) spectrum. The requirements and limitations have put optical communications on promising alternatives to RF communications for a CubeSat platform, owing to the power efficiency and high data rate as well as the license free spectrum. In this study, we analyzed the performance of optical downlink communications compatible with CubeSat platforms in terms of data rate, bit error rate (BER) and outage probability. Mathematical models of BER and outage probability were derived based on not only the log-normal model of atmospheric turbulence but also a transmitter with a finite extinction ratio. Given the fixed slot width, the optimal guard time and modulation orders were chosen to achieve the target data rate. And the two performance metrics, BER and outage data rate, were analyzed and discussed with respect to beam divergence angle, scintillation index and zenith angle.

Wireless Energy Supply for a MAV Propulsion System

  • Shimane, Eri;Komatsu, Shuhei;Komaru, Takashi;Komurasaki, Kimiya;Arakawa, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.862-865
    • /
    • 2008
  • Wireless energy supply for an MAV propulsion system using microwave was developed. This system consists of three sub system; the transmitter system, the rectenna system, and the tracking system. In the transmitter system five horn antennas were used as the antenna elements for the phased array system and both the beam divergence and steering angle was about 9deg. Eight rectennas were arrayed in parallel to obtain enough power to drive the electric motor on the MAV(the voltage was 250mV and the current was 6.8mA) in rectenna system. In tracking system two units of antenna system with leaf pattern which received the linearly-polarized wave despite the MAV yaw angle were set in each axis(x, y) for tracking an MAV in a 2-Dimentional space. And three output voltages $V_{com},\;V_1$ and $V_2$ were loaded in the PC to detect if the distance between transmitter and receiver was not constant. Finally when the microwave beam was steered by the phased array system the output voltage from rectenna was measured at 62cm while the MAV circled around above the transmitter system.

  • PDF

A Study of Lens Design Technique for Proximity Exposure Using a UVA LED (UVA LED를 이용한 근접 노광용 렌즈 설계 기술 연구)

  • Lee, Jeong-Su;Jo, Ye-Ji;Lee, Hyun-Hwa;Kong, Mi-Seon;Kang, Dong-Hwa;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.4
    • /
    • pp.146-153
    • /
    • 2019
  • The exposure system is a device that transfers a circuit pattern to a desired location. To display patterns on a substrate without deforming the optical characteristics, the characteristics of the optical exposure system are very important. Therefore, to form a microcircuit pattern, a small divergence angle should impinge on the irradiation area. Also, since the light from the source must react uniformly with the photosensitizer, it must have high luminance efficiency and uniformity of illumination. In this paper a parabolic reflector and an aspherical lens were designed to solve the problem of narrow-angle implementation, and it was confirmed by simulation analysis after their arrangement that the beam angle, uniformity, and maximum illuminance satisfied the target performance.

Output characteristics of a pulsed Ti:sapphire laser (펄스동작 Ti : sapphire 레이저의 출력특성)

  • 김병태;이형권
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.390-396
    • /
    • 1996
  • A pulsed Ti : sapphire laser with a Z-folded cavity, which was pumped by a frequency-doubled Nd : YAG laser, was developed. A laser output energy of 822 $\mu$J with a pulsewidth of 5 ns and an output efficiency of 27.4% was obtained at a center wavelength of 790 nm using an output coupler of 18% reflectance. The slope efficiency was 35%. The output beam diameter was 0.9 mm, and the divergence angle was 1.8 mrad. The spectrum tunability was about 120 nm from 740 nm to 860 nm with a FWHM of 90 nm at an 18% output coupler and a pumping energy of 3 mJ.

  • PDF

Laser micromachining of optical endoscopic fiber for viewing (시야각 조절이 가능한 내시경 광섬유 레이저 가공 기술)

  • Yoo, Dongyoon;Choi, Hun-Kook;Sohn, Ik-Bu;Noh, Young-Chul;Shin, Jung-Won
    • Laser Solutions
    • /
    • v.18 no.1
    • /
    • pp.18-22
    • /
    • 2015
  • In this paper, controlling shape of optical fiber tip for endoscope was investigated for eliminating blind spot. The blind spot of endoscope is generated by divergence angle of optical fiber, so it is easy to generate blind spot when tightly focusing. In order to eliminate this region, fiber tip is necessary to be controlled as convex or concave. Illumination simulation of convex and concave type of fiber tip in the endoscope was in progress, so the distance of non- blind region was investigated in each case. As well as the simulation, the tip was fabricated as concave shape by UV laser machining. Then the beam radiation was measured to observe the blind region. The result showed that controlling the fiber tip as convex or concave shape makes the narrow blind region of illumination in endoscope.

Target Tracking based on Kernelized Correlation Filter Using MWIR and SWIR Sensors (MWIR 및 SWIR 센서를 이용한 커널상관필터기반의 표적추적)

  • Sungu Sun;Yuri Lee;Daekyo Seo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • When tracking small UAVs and drone targets in cloud clutter environments, MWIR sensors are often unable to track targets continuously. To overcome this problem, the SWIR sensor is mounted on the same gimbal. Target tracking uses sensor information fusion or selectively applies information from each sensor. In this case, parallax correction using the target distance is often used. However, it is difficult to apply the existing method to small UAVs and drone targets because the laser rangefinder's beam divergence angle is small, making it difficult to measure the distance. We propose a tracking method which needs not parallax correction of sensors. In the method, images from MWIR and SWIR sensors are captured simultaneously and a tracking error for gimbal driving is chosen by effectiveness measure. In order to prove the method, tracking performance was demonstrated for UAVs and drone targets in the real sky background using MWIR and SWIR image sensors.

Design and Application of Acrylic Electron Wedge for Improving Dose Inhomogeneities at the Junction of Electron Fields (전자선 조사야 결합부분의 선량분포 개선을 위한 acrylic electron wedge의 제작 및 사용)

  • Kim, Young-Bum;Kwon, Young-Ho;Whang, Woong-Ku;Kim, You-Hyun;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.21 no.2
    • /
    • pp.36-42
    • /
    • 1998
  • Treatment of a large diseased area with electron often requires the use of two or more adjoining fields. In such cases, not only electron beam divergence and lateral scattering but also fields overlapping and separation may lead to significant dose inhomogeneities(${\pm}20%$) at the region of junction of fields. In this study, we made Acrylic Electron Wedges to improve dose inhomogeneities(${\pm}5%$) in these junction areas and to apply it to clinical practices. All measurements were made using 6, 9, 12, 16, 20 MeV Electron beams from a linear accelerator for a $10{\times}10\;cm$ field at 100cm of SSD. Adding a 1 mm sheet of acryl gradually from 1 mm to 15 mm acquires central axis depth dose beam profile and isodose curves in water phantom. As a result, for all energies, the practical range was reduced by approximately the same distance according to the acryl insert, e.g. a 1 mm thick acryl insert reduces the practical range by approximately 1 mm. For every mm thickness of acryl inserted, the beam energy was reduced to approximately 0.2 MeV. These effects were almost Independent of beam energy and field size. The use of Acrylic Electron Wedges produced a small increase(less than 3%) in the surface dose and a small increase(less than 1%) in X-ray contamination. For acryl inserts, thickness of 3 mm or greater, the penumbra width increased nearly linear for all energies and isodose curves near the beam edge were nearly parallel with the incident beam direction at the point of penumbra width($35\;mm{\sim}40\;mm$). We decide heel thickness and angle of the wedge at this point. These data provide the information necessary to design Acrylic Electron Wedge which can be used to improve dose uniformity at electron field junctions and it will be effectively applied to clinical practices.

  • PDF

Design and Application of Acrylic Electron Wedge to Improve Dose Inhomogeneities at the Junction of Electron Fields (전자선 조사야 결합부분의 선량분포 개선을 위한 Acrylic Electron Wedge의 제작 및 사용)

  • Kim Young Bum;Kwon Young Ho;Whang Woong Ku;Kim You Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.60-68
    • /
    • 1998
  • Treatment of a large diseased area with electron often requires the use of two or more adjoining fields. In such cases, not only electron beam divergence and lateral scattering but also fields overlapping and separation may lead to significant dose inhomogeneities(${\pm}20\%$) at the field junction area. In this study, we made Acrylic Electron Wedges to improve dose homogeneities(${\pm}5\%$) in these junction areas and considered application it to clinical practices. All measurements were made using 6, 9, 12, 16, 20MeV Electron beams from a linear accelerator for a $10{\times}10cm$ field at 100cm SSD. Adding a 1 mm sheet of acryl gradually from 1 mm to 15 mm, We acquired central axis depth dose beam profile and isodose curves in water phantom. As a result, for all energies, the practical range was reduced by approximately the same distance as the thickness of the acryl insert, e.g. a 1 mm thick acryl insert reduce the practical range by approximately 1 mm. For every mm thickness of acryl inserted, the beam energy was reduced by approximately 0.2MeV. These effects were almost independent of beam energy and field size. The use of Acrylic Electron Wedges produced a small increase $(less\;than\;3\%)\;in\;the\;surface\;dose\;and\;a\;small\;Increase(less\;than\;1\%)$ in X-ray contamination. For acryl inserts, thickness of 3 mm or greater, the penumbra width increased nearly linear for all energies and isodose curves near the beam edge were nearly parallel with the incident beam direction, and penumbra width was $35\;mm{\sim}40\;mm$. We decide heel thickness and angle of the wedge at this point. These data provide the information necessary to design Acrylic Electron Wedge which can be use to improve dose uniformity at electron field junctions and it will be effectively applicated in clinical practices.

  • PDF

Collimation testing of a white light beam and measurement of chromatic aberration of a lens by using vernier Moire fringe patterns (버니어 무아레 무늬를 이용한 백색광의 시준 검사 및 렌즈의 색수차 측정)

  • 송종섭
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.232-238
    • /
    • 2000
  • The new collimation testing technique of a white light beam using vernier Moire fringes of two line or circular gratings with different pitches is presented. We can visually measure the defocusing ($\Deltaf$), the divergence angle ($\theta$), and the longitudinal chromatic aberration $(L_{ch})$ of a collimating lens by using the technique. For example, we obtained $\Deltaf$= 21.9 mm and $\theta=0.0038^{\circ}$ for a testing lens with the focallengthf = 120.0 mm and F-number of F/2.4. The longitudinal chromatic aberration $L_{ch}$ of another testing lens withf = 65.0 mm, F/1.6, and the Abbe number V = 64.1 for the incident wavelengths of $\lambda_1=480 nm and \lambda_2=640 nm$ is easily measured by same technique. It is found that the measured value $L_{ch}=1.59mm(\pm0.01mm)$ is well agreed with $L_{ch}=1.58mm(\pm0.01mm)$ obtained by the autofocus method.

  • PDF

Optimization of Optical Coupling Properties of Active-Passive Butt Joint Structure in InP-Based Ridge Waveguide (InP계 리지 도파로 구조에서 활성층-수동층 버트 조인트의 광결합 효율 최적화 연구)

  • Song, Yeon Su;Myeong, Gi-Hwan;Kim, In;Yu, Joon Sang;Ryu, Sang-Wan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.47-54
    • /
    • 2020
  • Integration of active and passive waveguides is an essential component of the photonic integrated circuit and its elements. Butt joint is one of the important technologies to accomplish it with significant advantages. However, it suffers from high optical loss at the butt joint junction and need of accurate process control to align both waveguides. In this study, we used beam propagation method to simulate an integrated device composed of a laser diode and spot size converter (SSC). Two SSCs with different mode properties were combined with laser waveguide and optical coupling efficiency was simulated. The SSC with larger near field mode showed lower coupling efficiency, however its far field pattern was narrower and more symmetric. Tapered passive waveguide was utilized for enhancing the coupling efficiency and tolerance of waveguide offset at the butt joint without degrading the far field pattern. With this technique, high optical coupling efficiency of 89.6% with narrow far field divergence angle of 16°×16° was obtained.