• Title/Summary/Keyword: Beam-column method

Search Result 492, Processing Time 0.019 seconds

Establishment of Rebar Quantity Estimation in BIM-based Initial Design Phase (BIM기반 초기 설계 단계 철근 물량 산출 프로세스 구축)

  • Song, Chi-Ho;Kim, Chee-Kyeong;Lee, Si Eun;Choi, Hyunchul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.447-454
    • /
    • 2016
  • In the meantime, looking at the present status of how to estimationte the quantity of rebar based on 3D BIM getting the limelight in these days, commercial BIM tools provide rebar modeling functions however it takes a vast amount of modeling time for modeling of rebar in use of that function hence there is no BIM software at present for practical use. Therefore, in this study, we organized and presented a practical rebar quantity estimationtion process in BIM-based design work-site and intended to develop a program named Rebar Automatic Arrangement Program - hereinafter called RAAP - which enables automatic rebar arrangement based on much more precise cross-sectional information of bars in column, beam, slab and wall than the one from existing 2D method under the conditions without any cross-sectional information in the initial design phase. In addition, we intended to establish rebar quantity estimationtion process in the initial design phase through interworking of modeling & quantity estimationtion functions in consideration of joint, anchoring length of BuilderHUB as a BIM software with RAAP. The results from this study are practical in developing a technology that is able to estimationte quantity with more improved reliability than the one from existing 2D-based methods with less effort when the quantity of framework is estimationted in the uncompleted state of cross-sectional design for structural members in the initial design phase of a construction project. And it is expected that it could be utilized as a basic study from which a reasonable quantity estimationtion program can be established in the initial design phase.

Development of Connection Model based on FE Analysis to Ensure Stability of Steel Storage Racks (적재설비 안정성 확보를 위한 FE 해석 기반의 연결부 모델 개발)

  • Heo, Gwanghee;Kim, Chunggil;Yu, Darly;Jeon, Jongsu;Lee, Chinok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.349-356
    • /
    • 2018
  • This paper attempts to develop a connection model based on FE analysis that can be applied to the evaluation of earthquake fragility of Steel Storage Racks lacking research in Korea. In order to accomplish this goal, shaking table tests, modal tests, and various member tests (8 case, push-over test) for structural members have been conducted to understand the behavior of steel storage racks. Based on the experimental results, detailed modeling of the joints was conducted using the NX-Nastran program in order to develop a connection model for Steel storage racks to be applied to the seismic vulnerability assessment. Especially, surface to surface contact element and spring element are applied to simulate the connection between the column member and the beam member connected by the simple latch method. Spring element model developed and applied ARX (Auto Regressive eXogenous) based mathematical model. The simulation results based on the FE model showed excellent reliability with a mutual error rate of less than 8% when compared with the member test results. As a result, it was confirmed that the FE model based connection model developed in the study can be applied to the analytical model for the seismic vulnerability assessment of Steel storage racks.