• Title/Summary/Keyword: Beam-column method

Search Result 493, Processing Time 0.023 seconds

Application of power spectral density function for damage diagnosis of bridge piers

  • Bayat, Mahmoud;Ahmadi, Hamid Reza;Mahdavi, Navideh
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.57-63
    • /
    • 2019
  • During the last two decades, much joint research regarding vibration based methods has been done, leading to developing various algorithms and techniques. These algorithms and techniques can be divided into modal methods and signal methods. Although modal methods have been widely used for health monitoring and damage detection, signal methods due to higher efficiency have received considerable attention in various fields, including aerospace, mechanical and civil engineering. Signal-based methods are derived directly from the recorded responses through signal processing algorithms to detect damage. According to different signal processing techniques, signal-based methods can be divided into three categories including time domain methods, frequency domain methods, and time-frequency domain methods. The frequency domain methods are well-known and interest in using them has increased in recent years. To determine dynamic behaviours, to identify systems and to detect damages of bridges, different methods and algorithms have been proposed by researchers. In this study, a new algorithm to detect seismic damage in the bridge's piers is suggested. To evaluate the algorithm, an analytical model of a bridge with simple spans is used. Based on the algorithm, before and after damage, the bridge is excited by a sine force, and the piers' responses are measured. The dynamic specifications of the bridge are extracted by Power Spectral Density function. In addition, the Least Square Method is used to detect damage in the bridge's piers. The results indicate that the proposed algorithm can identify the seismic damage effectively. The algorithm is output-only method and measuring the excitation force is not needed. Moreover, the proposed approach does not need numerical models.

Case Study on the Explosive Demolition of the KOGAS Office Building in Bundang District (한국가스공사 분당사옥 발파해체 시공사례)

  • Kim, Sang-min;Park, Keun-sun;Son, Byung-min;Kim, Ho-jun;Kim, Hee-do;Kim, Gab-soo
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.48-61
    • /
    • 2018
  • This case study is concerned with the project of the explosive demolition for the KOGAS office building located in Bundang district in Seongnam city. Since the office building was a kind of long-span beam structures, a mechanical demolition method using jacking support systems was considered in the beginning of the project. With consideration of the excessive reinforcement cost, uncertainty of safety, and prolonged construction period, however, the original plan was later changed to use an explosive demolition method. For the purpose of protecting nearby buildings and facilities during the collapse process, the explosive initiation sequence was elaborately designed to bring down the building structure towards its front left corner. A total of over 550 electronic detonators (Unitronic 600) was used to sequentially initiate the explosives installed at appropriate columns in the first, second, and fifth floors. To diminish dust production, water bags of small and large sizes were respectively installed at each column and on the floors to be blasted. As such, every effort was exercised to mitigate overall noise, dust, and shock vibrations that could be generated during the explosive demolition process for the office building.

A Study on Joint Damage Model and Neural Networks-Based Approach for Damage Assessment of Structure (구조물 손상평가를 위한 접합부 손상모델 및 신경망기법에 관한 연구)

  • 윤정방;이진학;방은영
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.9-20
    • /
    • 1999
  • A method is proposed to estimate the joint damages of a steel structure from modal data using the neural networks technique. The beam-to-column connection in a steel frame structure is represented by a zero-length rotational spring of the end of the beam element, and the connection fixity factor is defined based on the rotational stiffness so that the factor may be in the range 0~1.0. Then, the severity of joint damage is defined as the reduction ratio of the connection fixity factor. Several advanced techniques are employed to develop the robust damage identification technique using neural networks. The concept of the substructural indentification is used for the localized damage assessment in the large structure. The noise-injection learning algorithm is used to reduce the effects of the noise in the modal data. The data perturbation scheme is also employed to assess the confidence in the estimated damages based on a few sets of actual measurement data. The feasibility of the proposed method is examined through a numerical simulation study on a 2-bay 10-story structure and an experimental study on a 2-story structure. It has been found that the joint damages can be reasonably estimated even for the case where the measured modal vectors are limited to a localized substructure and the data are severely corrupted with noise.

  • PDF

Initial Stiffness of Beam Column Joints of PCS Structural Systems (PCS 구조 시스템 접합부의 초기 강성에 대한 연구)

  • Park, Soon-Kyu;Kim, Moo-Kyung
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.271-282
    • /
    • 2008
  • Specific joint devices composed of end-plates and through bolts are under development to assemble steel beams to PC columns efficiently by dry construction method for the PCS structural system, of which major structural components are precast concrete columns and steel beams. Seismic performance of the joint devices had been evaluated by experimental tests in the previous studies and it was showed that all the performance requirements regarding to strength deterioration, stiffness degradation and energy dissipation capacity were satisfied to the criteria of ACI requirements, but the initial stiffness was not. In order to find out possible causes of the insufficient rigidity of the joint devices and provide the proper measures to improve the performance of the joint accordingly, numerical analyses were carried out by using ABAQUS. Parameters, such as thickness of neoprene pad, conditions of surface between PC column and end-plate, magnitude of pretension forces of through bolts, stiffness of end-plate were taken into consideration. As the result, it was found that the rigidity of the PCS system was negatively affected by the magnitude of initial gaps between PC columns and end-plates, and insufficient stiffness of neoprene fillers and end plates. In order to improve the initial stiffness performance of the joints, measures such as increase of the magnitude of pretension forces on through bolts and increase of the stiffness of end-plate by reducing the bolt pitch and providing adequate stiffeners are recommended.

Experimental Study on the Determination of Absorbed dose Index (흡수선량지수결정(吸收線量指數決定)에 관한 실험적(實驗的) 연구(硏究))

  • Jun, Jae-Shik;Rho, Chae-Shik;Ro, Seung-Gy;Ha, Chung-Woo;Yoo, Young-Soo;Lee, Hyun-Duk
    • Journal of Radiation Protection and Research
    • /
    • v.7 no.1
    • /
    • pp.34-48
    • /
    • 1982
  • The prime purpose of this study is to realize an index quantity, absorbed dose index, defined by the ICRU for the characterization of ambient radiation level at any location for the purpose of radiation protection. The experiment has been designed to be carried out in two phases, namely, preliminary and main experiment. In the primary study a 30cm diameter sphere of polyethylene was used, while in the main experiment that of tissue equivalent material was fabricated and used. Both experiments were performed in the gamma-ray fields of $^{137}Cs\;and\;^{60}Co$, and in a neutron beam of thermal column of the TRIGA MARK-II research reactor. In the measurement of gamma-ray absorbed dose TLD-700 $(^{7}LiF)$ chips were used, and for the neutron dose both Au activation foils and TLD chips (TLD-600 $(^{6}LiF)$ and TLD-700 for the discrimination of gamma-ray contribution) were used. Theoretical assessment of the absorbed dose in the sphere phantom has been carried out in accordance with the Ehrlich's idea that deduced on the basis of Burlin's cavity theory in the case of gamma-ray irradiation. For the analysis of neutron dose fluence-KERMA rate conversion method was used. The explanation on the dose assessment is given in detail. Results obtained were numerically and statistically analyzed and the depth dose distributions are presented in the graphic forms with normalized values. In the concluding remarks, the possibility and difficulty of realizing the index quantity, including questions and problems to be solved are mentioned.

  • PDF

Sensitivity Analysis of Dynamic Characteristics of Structural Systems by the Transfer Matrix Method and the Combined Finite Element-Transfer Matrix Method (전달매트릭스법 및 유한요소-전달매트릭스 결합방법에 의한 구조계의 동특성 감도해석)

  • D.S. Cho;K.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.143-157
    • /
    • 1992
  • For the design of structural systems having the prescribed or optimum dynamic characteristics, some design changes of the initially designed system are required. In these cases, if the sensitivity analysis which can predict the changes of dynamic characteristics due to the changes of design variables is applied, the design changes can be carried out rationally and very efficiently. For many structural systems, it is well known that the analysis by the transfer matrix method(TMM) and the combined finite element-transfer matrix method(FETMM) is more efficient than the analysis by the finite element method. However, most known studies on the sensitivity analysis of structural systems premise using the finite element method. In this paper, the sensitivity analysis methods by the TMM and the FETMM are presented and some numerical investigations on the beam-column with elastically restrained ends and intermediate contraints and the stiffened plate having subsystems are carried out. The results of the numerical examples show good accuracy and computational efficiency of the presented methods, and show that the application of sensitivity analysis in the dynamic characteristic reanalysis give good results within the practically changeable range of design variables.

  • PDF

P-M Interaction Curve for Square CFTs with High-Strength Concrete (고강도 콘크리트를 사용한 각형 CFT 기둥의 축력-모멘트 상관곡선)

  • Choi, Young Hwan;Kim, Kang Su;Choi, Sung Mo;Lee, Sangsup
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.575-585
    • /
    • 2007
  • In this study, a new design equation was presented for square CFTs with high-strength concrete subjected to axial compression and bending. In a previous study, a design equation for square CFTs with normal strength concrete was proposed. A parametric study by fiber analysis was performed taking the width-to-thickness ratio (b/t) and the relative concrete strength to the yield strength of the steel tube (fck/Fy) as the main parameters of this study to determine the maximum moment and the axial load at the maximum moment. A new constitutive model for concrete was adopted for fiber analysis in order to take into account the effect of high-strength concrete. The results of the parametric study were embedded into the method which was presented in the previous study to formulate a new design equation that can be easily used for estimating the strength of square CFTs with high-strength concrete.

Structural design method of the steel brush type loading platen adopted in multi-axial compression experiments (다축압축 실험에 적용되는 철제 빗살구조 재하판의 구조 설계 기법)

  • SaGong, Myung;Lee, Jun-S.;Kim, Sung-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.351-359
    • /
    • 2007
  • Multi-axial compression tests have been frequently conducted to evaluate the in situ properties of rock masses and the mechanical behaviors of rock strata through the model tests. Without the proper boundary condition for the model tests, the mechanical behavior of rock mass would deviate, as can be expected, from the in situ conditions. The boundary condition will affect the internal stress distribution of the specimens and cause some distortion on the measurement. In this study, a design process regarding the steel brush, which has been employed for multi-axial compression test to reduce the frictional restraint along the specimen/loading platen interface, is introduced. The individual brushes are regarded as a simple column and beam to calculate the cross-sectional size and length of the brushes in consideration of the buckling capacity and the allowable deflection.

  • PDF

Numerical analysis and horizontal bearing capacity of steel reinforced recycled concrete columns

  • Ma, Hui;Xue, Jianyang;Liu, Yunhe;Dong, Jing
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.797-820
    • /
    • 2016
  • This paper simulates the hysteretic behavior of steel reinforced recycled concrete (SRRC) columns under cyclic loads using OpenSees software. The effective fiber model and displacement-based beam-column element in OpenSees is applied to each SRRC columns. The Concrete01 material model for recycled aggregate concrete (RAC) and Steel02 material model is proposed to perform the numerical simulation of columns. The constitutive models of RAC, profile steel and rebars in columns were assigned to each fiber element. Based on the modelling method, the analytical models of SRRC columns are established. It shows that the calculated hysteresis loops of most SRRC columns agree well with the test curves. In addition, the parameter studies (i.e., strength grade of RAC, stirrups strength, steel strength and steel ratio) on seismic performance of SRRC columns were also investigated in detail by OpenSees. The calculation results of parameter analysis show that SRRC columns suffered from flexural failure has good seismic performance through the reasonable design. The ductility and bearing capacity of columns increases as the increasing magnitude of steel strength, steel ratio and stirrups strength. Although the bearing capacity of columns increases as the strength grade of RAC increases, the ductility and energy dissipation capacity decreases gradually. Based on the test and numerical results, the flexural failure mechanism of SRRC columns were analysed in detail. The computing theories of the normal section of bearing capacity for the eccentrically loaded columns were adopted to calculate the nominal bending strength of SRRC columns subjected to vertical axial force under lateral cyclic loads. The calculation formulas of horizontal bearing capacity for SRRC columns were proposed based on their nominal bending strength.

An Study on the Measurement of Natural Period of Apartment for Seismic Design (내진설계를 위한 공동주택의 고유주기 측정에 관한 연구)

  • Kim, Dongbaek;Lee, Byeonghoon;Lee, Kwangjae;Lee, Induk
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.487-492
    • /
    • 2015
  • Recently, apartment designs are tend to be changed from the standard pattern by many causes and the beam-column structures are getting popular instead of wall structure system. Therefore, for the effective use of planed space the heights of apartment are tend to be higher and higher. According to Korea Building Code, earthquake resistance designs or seismic design for those high rise apartments must be more attentive and accurate, especially, dynamic periods of structures must be exactly measured, because those are very important for equivalent static analysis. The important subject of this study is to investigate the safety factors and seismic performance for natural period of high rise buildings by comparing the natural periods getting from ambient vibration method with those of Korea Building Code.