• Title/Summary/Keyword: Beam-Column connection

Search Result 500, Processing Time 0.022 seconds

Geometrically nonlinear analysis of plane frames composed of flexibly connected members

  • Gorgun, H.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.277-309
    • /
    • 2013
  • Beam-to-column connections behaviour plays an important role in the analysis and design of steel and precast concrete structures. The paper presents a computer-based method for geometrically nonlinear frames with semi-rigid beam-to-column connections. The analytical procedure employs modified stability functions to model the effect of axial force on the stiffness of members. The member modified stiffness matrix, and the modified fixed end forces for various loads were found. The linear and nonlinear analyses were applied for two planar steel structures. The method is readily implemented on a computer using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks.

Structural Behavior of Joints Consisting of Reinforced Concrete Column and Steel Beam (철근콘크리트 기둥과 철골 보로 이루어진 혼합구조 접합부의 역학적 거동)

  • 김도균;김욱종;이동렬;문정호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.501-504
    • /
    • 1999
  • Recently, composite structural systems have been developed actively due to its structural advantages of combining different materials. The objective of this paper is to investigate the structural behavior of moment connection in composite structures which consist of steel beams and reinforced concrete columns. In this study, three 1/2 scale joint specimens were tested under reversal loads. The results showed that beam-column joints maintain ductility, strength and exhibit excellent energy-dissipating capacity when subjected to inelastic deformations under reversal load.

  • PDF

New stability equation for columns in unbraced frames

  • Essa, Hesham S.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.411-425
    • /
    • 1998
  • The effective length factor of a framed column may be determined by means of the alignment chart procedure. This method is based on many unrealistic assumptions, among which is that all columns have the same stiffness parameter, which is dependent on the length, axial load, and moment of inertia of the column. A new approximate method is developed for the determination of effective length factors for columns in unbraced frames. This method takes into account the effects of inelastic column behaviour, far end conditions of the restraining beams and columns, semi-rigid beam-to-column connections, and differentiated stiffness parameters of columns. This method may be implemented on a microcomputer. A numerical study was carried out to demonstrate the extent to which the involved parameters affect the K factor. The beam-to-column connection stiffness, the stiffness parameter of columns, and the far end conditions of restraining members have a significant effect on the K factor of the column under investigation. The developed method is recommended for design purposes.

Estimation of production length of PC beam by using splice length of bottom rebar (하부철근 이음길이에 따른 PC 보 제작 길이 산정)

  • Sung, Soojin;Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.84-85
    • /
    • 2014
  • Green frame is column-beam structure composed of precast concrete members. Based on Revision of Structural Concrete Design Code, the bottom rebar of beam shall be extend at least 150mm into the support member. However, if the bottom rebar extend to satisfy Revision of Structural Concrete Design Code, the installation fo beam is impossible due to interference between the columns and beams. Thus, the aim of this study is estimation of production length of precast concrete beam by using splice length of bottom rebar. In this study to solve this problem, lap splice were used on the join. This study was calculated length of the reinforcement by the diameter. According to the length of the rebar, the production length of beam concrete was calculated. The results of this study will satisfy the Revision of Structural Concrete Design Code about column-beam connection when green frame will be applied.

  • PDF

Test Results on the Type of Beam-to-Column Connection using SHN490 Steel (SHN490강종의 보-기둥 접합부 형태에 따른 실험적 연구)

  • Kim, So Yeong;Byeon, Sang Min;Lee, Ho;Shin, Kyung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.311-321
    • /
    • 2015
  • In this study, an experimental study to evaluate the seismic performance of beam-to-column connection for medium and low-rise building was conducted. Five connections using SHN490 steel were made with test variables such as flange welded or bolted, web welded or bolted. Specimen SHN-W-W is web welded and flange welded type. Specimen SHN-W-B is web welded and flange bolted type. Specimen SHN-B-W is web bolted and flange welded type. Specimen SHN-B-B is web bolted and flange bolted type. Specimen SHN-EP is a connection with the end plate to the beam ends. Cyclic loadings was applied at the tip of beam following KBC2009 load protocol. The load vs rotation curves for different connection are shown and final failure mode shapes are summarized. The connections are classified in terms of stiffness and strength as semi-rigid or rigid connection. Energy dissipation capacities for seismic performance evaluation were compared.

Inelastic Time History Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. An inelastic time history analysis of structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of semi-rigid connections were used for the models. A fiber model was utilized for the moment-curvature relationship of a steel beam and a column, a three-parameter power model for the moment-rotation angle of the semi-rigid connection, and a three-parameter model for the hysteretic behavior of a steel beam, column, and connection. The base-shear force, top displacement, story drift, required ductility for the connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were investigated using four earthquake excitations with peak ground acceleration for a mean return period of 2,400 years and for the maximum base-shear force in the pushover analysis of a 5% story drift. The maximum base-shear force and story drift decreased with the outer vertical distribution of the semi-rigid connection, and the required ductility for the connection decreased with the higher horizontal distribution of the semi-rigid connection. The location of the maximum story drift differed in the pushover analysis and the time history analysis, and the magnitude was overestimated in the pushover analysis. The outer vertical distribution of the semi-rigid connection was recommended for the base-shear force, story drift, and required ductility for the connection.

Inelastic Behavior of Beam-Column Joints Composed of RC Column and RS Beams (RC 기둥과 RS 보로 이루어진 보-기둥 접합부의 비탄성 거동)

  • 김욱종;윤성환;문정호;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.734-741
    • /
    • 2002
  • An experimental study was carried out for beam-column joints composed of RC column and RS beams. The purpose of this study is to examine the inelastic seismic behavior for the RC-RS connection. Two interior and one exterior beam-column assemblies with variable moment ratios were tested. Experimental results showed that strength and deformability except stiffness were satisfactory. It is considered that the lack of stiffness was due to the slipping of steel beam from RS beam. The behavioral characteristics of the RC-RS connection were evaluated according to the quideline suggested by Hawkins et al. Nominal strength at 5 % joint distortion was not satisfactory, but all the other requirements, such as strength preserving capability, energy dissipation, and initial stiffness and strength ratios after peak load were satisfactory compared with the guideline. Thus it was concluded that the RC-RS connections can maintain ductility with excellent energy-dissipating capacity if being provided with appropriate reinforced structural system such as RC core wall for the initial lateral stiffness.

Experimental investigation of local stress distribution along the cross-section of composite steel beams near joints

  • Sangwook Park;Patricia Clayton;Todd A. Helwig;Michael D. Engelhardt;Eric B. Williamson
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.563-573
    • /
    • 2024
  • This research experimentally evaluated the local stress distribution along the cross-section of composite beams under both positive and negative moments. The experiment utilized a large-scale, two-story, two-by-three bay steel gravity frame with a concrete on metal deck floor system. The composite shear connections, which are nominally assumed to be pinned under gravity loading, can develop non-negligible moment-resisting capacity when subjected to lateral loads. This paper discusses the local stress distribution, orshear lag effects, observed near the beam-to-column connections when subjected to combined gravity and lateral loading. Strain gauges were used for measurements along the beam depth at varying distances from the connection. The experimental data showed amplified shear lag effects near the unconnected region of the beam web and bottom flange under the applied loading conditions. These results indicate that strain does not vary linearly across the beam cross-section adjacent to the connection components. This insight has implications for the use of experimental strain gauge data in estimating beam demands near the connections. These findings can be beneficial in informing instrumentation plans for future experimental studies on composite beams.

Structural Behavior of Two-Seam Cold Formed Square CFT Column to Beam Connections (2심 냉간성형 각형 CFT기둥-보 접합부의 구조거동)

  • Oh, Heon-Keun;Kim, Sun-Hee;Park, Chan-Myun;Choi, Sung-Mo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.81-90
    • /
    • 2012
  • The concrete-filled tube (CFT) column has the excellent structural performance. But it is difficult to connect with column and beam because of closed section. Its Solution, 2 members of ㄷchennel in which Internal diaphragm is installed were welded beforehand and the method of making Rectangular Steel Tube was proposed. According to upside and downside junction shape, Internal diaphragm suggested as symmetric specimen and asymmetric specimen. The upper and lower diaphragm of the Symmetric specimen used the same horizontal and The upper diaphragm of the Asymmetric specimen used the horizontal plate and the lower diaphragm used the vertically plate. In this research, 4 T-shape column to beam steps connections were tested with cyclic loading experiment in order to evaluate the structural capability of the offered connection. Symmetric specimens be a failure in 0.03rad from beam flange. And Asymmetric specimens be a failure in 0.05rad from column interface. The comparison results of All specimens shown similar to energy absorption capacity in 0.02rad.

Seismic fragility curves of single storey RC precast structures by comparing different Italian codes

  • Beilic, Dumitru;Casotto, Chiara;Nascimbene, Roberto;Cicola, Daniele;Rodrigues, Daniela
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.359-374
    • /
    • 2017
  • The seismic events in Northern Italy, May 2012, have revealed the seismic vulnerability of typical Italian precast industrial buildings. The aim of this paper is to present a seismic fragility model for Italian RC precast buildings, to be used in earthquake loss estimation and seismic risk assessment by comparing two building typologies and three different codes: D.M. 3-03-1975, D.M. 16-01-1996 and current Italian building code that has been released in 2008. Based on geometric characteristics and design procedure applied, ten different building classes were identified. A Monte Carlo simulation was performed for each building class in order to generate the building stock used for the development of fragility curves trough analytical method. The probabilistic distributions of geometry were mainly obtained from data collected from 650 field surveys, while the material properties were deduced from the code in place at the time of construction or from expert opinion. The structures were modelled in 2D frameworks; since the past seismic events have identified the beam-column connection as the weakest element of precast buildings, two different modelling solutions were adopted to develop fragility curves: a simple model with post processing required to detect connection collapse and an innovative modelling solution able to reproduce the real behaviour of the connection during the analysis. Fragility curves were derived using both nonlinear static and dynamic analysis.