• 제목/요약/키워드: Beam to Column Joints

검색결과 392건 처리시간 0.021초

Calibration of model parameters for the cyclic response of end-plate beam-to-column steel-concrete composite joints

  • Nogueiro, Pedro;da Silva, Luis Simoes;Bento, Rita;Simoes, Rui
    • Steel and Composite Structures
    • /
    • 제9권1호
    • /
    • pp.39-58
    • /
    • 2009
  • Composite joints, considering the composite action of steel and concrete, exhibit, in general, high strength and high ductility. As a consequence, the use of this type of joint has been increasing in many countries, especially in those that are located in earthquake-prone regions. In this paper, a hysteretic model with pinching is presented that is able to reproduce the cyclic response of steel and composite joints. Secondly, the computer implementation and adaptation of the model in a spring element within the computer code Seismosoft is described. The model is subsequently calibrated using a series of experimental test results for composite joints subjected to cyclic loading. Finally, typical parameters for the various joint configurations are proposed.

철근콘크리트 기둥과 철골 보로 이루어진 혼합구조 접합부의 역학적 거동 (Structural Behavior of Joints Consisting of Reinforced Concrete Column and Steel Beam)

  • 김도균;김욱종;이동렬;문정호;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.501-504
    • /
    • 1999
  • Recently, composite structural systems have been developed actively due to its structural advantages of combining different materials. The objective of this paper is to investigate the structural behavior of moment connection in composite structures which consist of steel beams and reinforced concrete columns. In this study, three 1/2 scale joint specimens were tested under reversal loads. The results showed that beam-column joints maintain ductility, strength and exhibit excellent energy-dissipating capacity when subjected to inelastic deformations under reversal load.

  • PDF

Numerical modelling of FRP strengthened RC beam-column joints

  • Mahini, Seyed S.;Ronagh, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • 제32권5호
    • /
    • pp.649-665
    • /
    • 2009
  • This paper reports part of a comprehensive research study conducted at the University of Queensland on the ability of CFRP web-bonded systems in strengthening an exterior beam-column joint subjected to monotonic loads. One 1/2.2 scaled plain and four CFRP repaired/retrofitted joints subjected to monotonic loads were analysed using the nonlinear finite-element program ANSYS and the results were calibrated against experiments. The ANSYS model was employed in order to account for tension stiffening in concrete after cracking and a modified version of the Hognestad's model was used to model the concrete compressive strength. The stress-strain properties of main steel bars were modelled using multilinear isotropic hardening model and the FRPs were modelled as anisotropic materials. A perfect bond was assumed as nodes were shared between adjacent elements irrespective of their type. Good agreement between the numerical predictions and the experimental observation of the failure mechanisms for all specimens were observed. Closeness of these results proved that the numerical analysis can be used by design engineers for the analysis of web-bonded FRP strengthened beam-column joints with confidence.

Analytical assessment of RC beam-column connections strengthened with CFRP sheets

  • 기엔;김민;이기학;이재홍
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.470-473
    • /
    • 2006
  • Past experiences from recent earthquakes indicate that shear failures of beam-column connections were one of the main reasons causing significant damages and collapses of RC structures subjected to earthquake loadings. Many researchers and engineers have conducted to propose an effective way to improve the joint shear strength of RC connections. This paper presents an analytical model for the RC exterior beam-column joints strengthened with CFRP sheets. In the analytical model, the effect of shear behavior of the RC beam-column joint, bond slip of the beam longitudinal reinforcements and CFRP sheets were considered and incorporated into the non-linear structural analysis program. Final analytical results were compared with those from the experiment of eight exterior RC beam-column specimens. The analytical results showed that the developed connection model is very useful to investigate the hysteretic joint behavior and overall load-displacement response of the RC beam-column connections strengthened with CFRP sheets.

  • PDF

Improvement, analytical verification and application of RC frame beam-column joint models

  • Fan, Guoxi;Wang, Debin;Jia, Jing
    • Earthquakes and Structures
    • /
    • 제14권3호
    • /
    • pp.273-283
    • /
    • 2018
  • Previous experimental researches indicate that reinforced concrete beam-column joints play an important role in the mechanical properties of moment resisting frame structures, so as to require proper design. In order to get better understanding of the beam-column joint performance, a rational model needs to be developed. Based on the former considerations, two typical models for calculating the shear carrying capacity of the beam-column joint including the inelastic reinforced concrete joint model and the softened strut-and-tie model are selected to be introduced and analyzed. After examining the applicability of two typical models mentioned earlier to interior beam-column joints, several adjustments are made to get better predicting of the test results. For the softened strut-and-tie model, four adjustments including modifications of the depth of the diagonal strut, the inclination angle of diagonal compression strut, the smeared stress of mild steel bars embedded in concrete, as well as the softening coefficient are made. While two adjustments for the inelastic reinforced concrete joint model including modifications of the confinement effect due to the column axial load and the correction coefficient for high concrete are made. It has been proved by test data that predicted results by the improved softened strut-and-tie model or the modified inelastic reinforced concrete joint model are consistent with the test data and conservative. Based on the test results, it is also not difficult to find that the improved beam-column joint model can be used to predict the joint carrying capacity and cracks development with sufficient accuracy.

Seismic behaviour of gravity load designed flush end-plate joints

  • Cassiano, David;D'Aniello, Mario;Rebelo, Carlos
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.621-634
    • /
    • 2018
  • Flush end-plate (FEP) beam-to-column joints are commonly used for gravity load resisting parts in steel multi-storey buildings. However, in seismic resisting structures FEP joints should also provide rotation capacity consistent with the global structural displacements. The current version of EN1993-1-8 recommends a criterion aiming at controlling the thickness of the end-plate in order to avoid brittle failure of the connection, which has been developed for monotonic loading conditions assuming elastic-perfectly plastic behaviour of the connection's components in line with the theory of the component method. Hence, contrary to the design philosophy of the hierarchy of resistances implemented in EN1998-1, the over strength and the hardening of the plastic components are not directly accounted for. In light of these considerations, this paper describes and discusses the results obtained from parametric finite element simulations aiming at investigating the moment-rotation response of FEP joints under cyclic actions. The influence of bolt diameter, thickness of end-plate, number of bolt rows and shape of beam profile on the joint response is discussed and design requirements are proposed to enhance the ductility of the joints.

Progressive collapse analysis of stainless steel composite frames with beam-to-column endplate connections

  • Wang, Jia;Uy, Brian;Li, Dongxu;Song, Yuchen
    • Steel and Composite Structures
    • /
    • 제36권4호
    • /
    • pp.427-446
    • /
    • 2020
  • This paper carries out the progressive collapse analysis of stainless steel composite beam-to-column joint sub-models and moment-resisting frames under column removal scenarios. The static flexural response of composite joint sub-models with damaged columns was initially explored via finite element methods, which was validated by independent experimental results and discussed in terms of moment-rotation relationships, plastic hinge behaviour and catenary actions. Simplified finite element methods were then proposed and applied to the frame analysis which aimed to elaborate the progressive collapse response at the frame level. Nonlinear static and dynamic analysis were employed to evaluate the dynamic increase factor (DIF) for stainless steel composite frames. The results suggest that the catenary action effect plays an important role in preventing the damaged structure from dramatic collapse. The beam-to-column joints could be critical components that influence the capacity of composite frames and dominate the determination of dynamic increase factor. The current design guidance is non-conservative to provide proper DIF for stainless steel composite frames, and thus new DIF curves are expected to be proposed.

Effect of loading velocity on the seismic behavior of RC joints

  • Wang, Licheng;Fan, Guoxi;Song, Yupu
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.665-679
    • /
    • 2015
  • The strain rate of reinforced concrete (RC) structures stimulated by earthquake action has been generally recognized as in the range from $10^{-4}/s$ to $10^{-1}/s$. Because both concrete and steel reinforcement are rate-sensitive materials, the RC beam-column joints are bound to behave differently under different strain rates. This paper describes an investigation of seismic behavior of RC beam-column joints which are subjected to large cyclic displacements on the beam ends with three loading velocities, i.e., 0.4 mm/s, 4 mm/s and 40 mm/s respectively. The levels of strain rate on the joint core region are correspondingly estimated to be $10^{-5}/s$, $10^{-4}/s$, and $10^{-2}/s$. It is aimed to better understand the effect of strain rates on seismic behavior of beam-column joints, such as the carrying capacity and failure modes as well as the energy dissipation. From the experiments, it is observed that with the increase of loading velocity or strain rate, damage in the joint core region decreases but damage in the plastic hinge regions of adjacent beams increases. The energy absorbed in the hysteresis loops under higher loading velocity is larger than that under quasi-static loading. It is also found that the yielding load of the joint is almost independent of the loading velocity, and there is a marginal increase of the ultimate carrying capacity when the loading velocity is increased for the ranges studied in this work. However, under higher loading velocity the residual carrying capacity after peak load drops more rapidly. Additionally, the axial compression ratio has little effect on the shear carrying capacity of the beam-column joints, but with the increase of loading velocity, the crack width of concrete in the joint zone becomes narrower. The shear carrying capacity of the joint at higher loading velocity is higher than that calculated with the quasi-static method proposed by the design code. When the dynamic strengths of materials, i.e., concrete and reinforcement, are directly substituted into the design model of current code, it tends to be insufficiently safe.

Unequal depth beam to column connection joint

  • Ben Mou;Aijia Zhang;Wei Pan
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.823-837
    • /
    • 2023
  • This paper presents the seismic performance of seven beam-column joints with an eccentricity between beam depths under cyclic loadings. The failure modes of the panel zone were divided into two types. One was the shear force failure that appeared in the entire panel zone (SFEPZ), the other was the shear force failure that appeared in the partial panel zone (SFPPZ). Seven finite element models were established using multi-scale methods. Compared with the experimental specimens, the hysteretic loops exhibited a similar trend. The multi-scale models could accurately simulate the experimental results. Furthermore, the calculation formulas of yield and plastic shear capacity of unequal-depth joints with outer annular stiffener were proposed.

Effectiveness of CFRP jackets in post-earthquake and pre-earthquake retrofitting of beam-column subassemblages

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • 제27권4호
    • /
    • pp.393-408
    • /
    • 2007
  • This paper presents the findings of an experimental study to evaluate retrofit methods which address particular weaknesses that are often found in reinforced concrete structures, especially older structures, namely the lack of the required flexural and shear reinforcement within the columns and the lack of the required shear reinforcement within the joints. Thus, the use of a high-strength fiber jacket for cases of post-earthquake and pre-earthquake retrofitting of columns and beam-column joints was investigated experimentally. In this paper, the effectiveness of the two jacket styles was also compared.