• Title/Summary/Keyword: Beam to Column Connection

Search Result 490, Processing Time 0.023 seconds

Dissipative Replaceable Bracing Connections (DRBrC) for earthquake protection of steel and composite structures

  • Jorge M. Proenca;Luis Calado;Alper Kanyilmaz
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.237-252
    • /
    • 2023
  • The article describes the development of a novel dissipative bracing connection device (identified by the acronym DRBrC) for concentrically braced frames in steel and composite structures. The origins of the device trace back to the seminal work of Kelly, Skinner and Heine (1972), and, more directly related, to the PIN-INERD device, overcoming some of its limitations and greatly improving the replaceability characteristics. The connection device is composed of a rigid housing, connected to both the brace and the beam-column connection (or just the column), in which the axial force transfer is achieved by four-point bending of a dissipative pin. The experimental validation stages, presented in detail, consisted of a preliminary testing campaign, resulting in successive improvements of the original device design, followed by a systematic parametric testing campaign. That final campaign was devised to study the influence of the constituent materials (S235 and Stainless Steel, for the pin, and S355 and High Strength Steel, for the housing), of the geometry (four-point bending intermediate spans) and of the loading history (constant amplitude or increasing cyclic alternate). The main conclusions point to the most promising DRBrC device configurations, also presenting some suggestions in terms of the replaceability requirements.

Analytical Study on Splice Performances with the Vertical Noncontact Lapped of Reinforcing Bars (수직으로 비접촉 겹침이음된 철근의 이음성능에 관한 해석적 연구)

  • Lee Ho-Jin;Kim Seung-Hun;Ha Sang-Su;Moon Jeong-Ho;Lee Li-Hyung;Lee Yong-Taeg
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.171-174
    • /
    • 2005
  • In this study, new moment-resisting precast concrete beam-column joint is proposed for moderate seismic regions. It has the connection reinforcing bars, penetrated the joint and lap-spliced with the bottom bars of precast U-beam. To evaluate the performance for noncontact lapped splice, analytical works were conducted. Major variables for FEM analysis are the length of lap, the diameter of connection reinforcing bars, and the distance between lapped bars. The results of this study show thar the these variables has much influence on strength and deformation of lapped joint.

  • PDF

A Study on the Improvement and Test on Welding Performance of R/C Column-Steel Girder Connection (철근콘크리트 기둥과 철골 보의 접합부 형식 발전 및 용접성능에 관한 시험적 연구)

  • 최광호;이세웅;김재순;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.569-574
    • /
    • 1997
  • This research has improved composite joint system of R/C column and steel beam developed at previous study. In this system, the shear force occurred at beam is transmitted by bearing resistance of stiffness and moment is resisted by tension capacity of coupling members. As the preliminary step of stress transfer tests of this system, welding performance test of coupling member such as round bar or square bar which has a role of moment transfer has been carried out. From the test, this element has a good welding performance and enough resistance capacity compared to design force.

  • PDF

Evaluation on Cyclic Flexural Behavior of HSRC (Hybrid H-steel-reinforced Concrete) Beams Connected with Steel Columns (강재 기둥과 하이브리드 강재 보-RC 보 접합부의 반복 휨 거동 평가)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok;Hong, Seung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.291-298
    • /
    • 2017
  • The objective of the present study is to evaluate the cyclic flexural behavior of a hybrid H-steel-reinforced concrete (HSRC) beam at the connection with a H-steel column. The test parameter investigated was the configuration of dowel bars at the joint region of the HSRC beam. The HSRC beam was designed to have plastic hinge at the end of the H-steel beam rather than the RC beam section near the joint. All specimens showed a considerable ductile behavior without a sudden drop of th applied load, resulting in the displacement ductility ratio exceeding 4.6, although an unexpected premature welding failure occurred at the flanges of H-steel beams connecting to H-steel column. The crack propagation in the RC beam region, flexural strength, and ductility of HSRC beam system were insignificantly affected by the configuration of dowel bars. The flexural strength of HSRC beam system governed by the yielding of H-steel beam could be conservatively evaluated from the assumption of a perfect plasticity state along the section.

Experimental Study on Seismic Retrofit of Steel Moment Connections Considering Constraint Effect of the Floor Slab (바닥슬래브에 의해 구속된 철골 모멘트접합부의 내진보강에 관한 실험적 연구)

  • Oh, Sang Hoon;Kim, Young Ju;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.247-255
    • /
    • 2004
  • An experimental program was undertaken to develop seismic retrofit methods of existing steel moment connections with floor slab for improved seismic performance. Five full-scale composite specimens were tested under cyclic loading. Conventional through-diaphragm connections [please check this; no search results were found for through-diaphragm connections] composed of square-tube column and H-beam were retrofitted by adding either a bottom-flange dogbone (RBS) or an improved welded horizontal stiffener at the beam bottom flange. The effectiveness of the proposed retrofit connections schemes was evaluated. The specimen retrofitted using the RBS concept at the bottom flange showed poor connection ductility. In contrast. specimens with the proposed horizontal stiffener details exhibited improved connection ductility.

Nonlinear finite element modelling of centric dowel connections in precast buildings

  • Zoubek, Blaz;Fahjan, Yasin;Fischinger, Matej;Isakovic, Tatjana
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.463-477
    • /
    • 2014
  • The modelling approach in the case of connections in precast buildings is specific. The assembly of the constitutive parts of the connection requires the inclusion of contact definitions in the model. In addition, the material non-linearity including the influence of the spatial stress distribution should be taken into account where appropriate. Here a complex model of a beam-to-column dowel connection is presented. Experiments on the analysed connection were performed within the framework of the European project SAFECAST (Performance of Innovative Mechanical Connections in Precast Building Structures under Seismic Conditions). Several material and interaction parameters were investigated and the influence of each of them was evaluated. The set of parameters which gave the best match with the experiments was chosen.

Dynamic increase factor for progressive collapse analysis of semi-rigid steel frames

  • Zhu, Yan Fei;Chen, Chang Hong;Yao, Yao;Keer, Leon M.;Huang, Ying
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.209-221
    • /
    • 2018
  • An empirical and efficient method is presented for calculating the dynamic increase factor to amplify the applied loads on the affected bays of a steel frame structure with semi-rigid connections. The nonlinear static alternate path analysis is used to evaluate the dynamic responses. First, the polynomial models of the extended end plate and the top and seat connection are modified, and the proposed polynomial model of the flush end plate connection shows good agreement as compared with experimental results. Next, a beam model with nonlinear spring elements and plastic hinges is utilized to incorporate the combined effect of connection flexibility and material nonlinearity. A new step-by-step analysis procedure is established to obtain quickly the dynamic increase factor based on a combination of the pushdown analysis and nonlinear dynamic analysis. Finally, the modified dynamic increase factor equation, defined as a function of the maximum ratio value of energy demand to energy capacity of an affected beam, is derived by curve fitting data points generated by the different analysis cases with different column removal scenarios and five types of semi-rigid connections.

Evaluation of cyclic fracture in perforated beams using micromechanical fatigue model

  • Erfani, Saeed;Akrami, Vahid
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.913-930
    • /
    • 2016
  • It is common practice to use Reduced Web Beam Sections (RWBS) in steel moment resisting frames. Perforation of beam web in these members may cause stress and strain concentration around the opening area and facilitate ductile fracture under cyclic loading. This paper presents a numerical study on the cyclic fracture of these structural components. The considered connections are configured as T-shaped assemblies with beams of elongated circular perforations. The failure of specimens under Ultra Low Cycle Fatigue (ULCF) condition is simulated using Cyclic Void Growth Model (CVGM) which is a micromechanics based fracture model. In each model, CVGM fracture index is calculated based on the stress and strain time histories and then models with different opening configurations are compared based on the calculated fracture index. In addition to the global models, sub-models with refined mesh are used to evaluate fracture index around the beam to column weldment. Modeling techniques are validated using data from previous experiments. Results show that as the perforation size increases, opening corners experience greater fracture index. This is while as the opening size increases the maximum observed fracture index at the connection welds decreases. However, the initiation of fracture at connection welds occurs at lower drift angles compared to opening corners. Finally, a probabilistic framework is applied to CVGM in order to account for the uncertainties existing in the prediction of ductile fracture and results are discussed.

Connection Performance of Steel Moment Frame with Out-of-Plane Beam Skew (면외방향 어긋난 보를 갖는 철골모멘트골조의 접합부 성능)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.84-91
    • /
    • 2022
  • This study investigated the behavior of out-of-plane skewed moment connections that were designed as IMFs, as per the Korean standards. A total of 14 finite element models were constructed with the consideration of two types (single- and double-sided connections) and four levels of skew angle (0°, 10°, 20°, and 30°). The results indicated that the skewed connections considered in this study met the acceptance criteria for IMFs given by the codes. However, the load-carrying capacities of skewed connections were decreased as the skew angle increased. For the connection with a skew angle of 30°, the peak load was noted to be 13% less and the energy dissipation capacity could be 26% less than that of non-skewed connection. In addition, because of the skewed nature, the stress distribution in the skewed beam flange near the connection was asymmetric and the stresses were concentrated on the beam inner flange. Column twisting induced by the skewed configuration was very small and negligible in the beam and column combination considered in this study.

Seismic Performance Evaluation of Beam-Column Connection for Panel Zone Strength (패널존의 강도비에 따른 기둥-보 접합부의 내진성능 평가)

  • Kim, Sung-Young;Shin, Chang-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.11-20
    • /
    • 2007
  • The study proposes the method to cancel the scallop to avoid fracture of the circumstance of the scallop at H shape column-to-beam connection and reinforce at beam flange two faces with the cover plates and rib. A total of four specimens were tested to enhance seismic performance of building structure by reducing the frequency of stress concentration and preventing the brittle fracture of scallop. For this purpose, four full-scale test specimens were made and loaded with quasi-static reversed cyclic loading. The main analytical parameters are panel-zone-strength ratio, yield strengths, initial stiffness, total plastic rotation, contribution of each element to total plastic rotation and energy dissipation capability. For the specimens tested under repeated loading, the experimental result was satisfied with seismic performance requirement as the Special Moment Frames (SMF). The analysis results show that all of the test specimens were found to have good performance to 4% story drift and satisfied the criteria for the plastic roation capacity of SMFs that is 0.03 rad. according to the 1997 AISC seismic provision.