• Title/Summary/Keyword: Beam steering

Search Result 176, Processing Time 0.03 seconds

Forward-Looking GMTI and Estimation of Position and Velocity Based on Millimeter-Wave(W-Band) FMCW SAR (밀리미터파(W 밴드) FMCW SAR 기반 전방의 이동지상표적 탐지 및 위치와 속도 추정)

  • Lee, Hyukjung;Chun, Joohwan;Song, Sungchan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.459-469
    • /
    • 2017
  • An air-to-ground guidance missile aimed to hit a main battle tank(MBT) should detect a ground moving target and estimate the target position to guide. In this paper, we detect a front ground moving target by using FMCW(Frequency Modulated Continuous Wave) and estimate the position by forward-looking SAR(Synthetic Aperture Radar) via scanning certain front ground section by steering a beam with narrow beamwidth left to right mechanically. Also, by MLE(Maximum Likelihood Estimation), degree of how fast the target approach or recede from the radar can be figured out from the estimated radial velocity of the moving target. Subsequently, we generate a radar image via corrected matched filter from phase history including the radial velocity.

Widely-Linear Beamforming and RF Impairment Suppression in Massive Antenna Arrays

  • Hakkarainen, Aki;Werner, Janis;Dandekar, Kapil R.;Valkama, Mikko
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.383-397
    • /
    • 2013
  • In this paper, the sensitivity of massive antenna arrays and digital beamforming to radio frequency (RF) chain in-phase quadrature-phase (I/Q) imbalance is studied and analyzed. The analysis shows that massive antenna arrays are increasingly sensitive to such RF chain imperfections, corrupting heavily the radiation pattern and beamforming capabilities. Motivated by this, novel RF-aware digital beamforming methods are then developed for automatically suppressing the unwanted effects of the RF I/Q imbalance without separate calibration loops in all individual receiver branches. More specifically, the paper covers closed-form analysis for signal processing properties as well as the associated radiation and beamforming properties of massive antenna arrays under both systematic and random RF I/Q imbalances. All analysis and derivations in this paper assume ideal signals to be circular. The well-known minimum variance distortionless response (MVDR) beamformer and a widely-linear (WL) extension of it, called WL-MVDR, are analyzed in detail from the RF imperfection perspective, in terms of interference attenuation and beamsteering. The optimum RF-aware WL-MVDR beamforming solution is formulated and shown to efficiently suppress the RF imperfections. Based on the obtained results, the developed solutions and in particular the RF-aware WL-MVDR method can provide efficient beamsteering and interference suppressing characteristics, despite of the imperfections in the RF circuits. This is seen critical especially in the massive antenna array context where the cost-efficiency of individual RF chains is emphasized.

Error analysis of acoustic target detection and localization using Cramer Rao lower bound (크래머 라오 하한을 이용한 음향 표적 탐지 및 위치추정 오차 분석)

  • Park, Ji Sung;Cho, Sungho;Kang, Donhyug
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.218-227
    • /
    • 2017
  • In this paper, an algorithm to calculate both bearing and distance error for target detection and localization is proposed using the Cramer Rao lower bound to estimate the minium variance of their error in DOA (Direction Of Arrival) estimation. The performance of arrays in detection and localization depends on the accuracy of DOA, which is affected by a variation of SNR (Signal to Noise Ratio). The SNR is determined by sonar parameters such as a SL (Source Level), TL (Transmission Loss), NL (Noise Level), array shape and beam steering angle. For verification of the suggested method, a Monte Carlo simulation was performed to probabilistically calculate the bearing and distance error according to the SNR which varies with the relative position of the target in space and noise level.

A Calibration Technique for Array antenna based GPS Receivers (배열 안테나 기반 GPS 수신기에서의 교정 방안)

  • Kil, Haeng-bok;Joo, Hyun;Lee, Chulho;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.683-690
    • /
    • 2018
  • In this paper, a new signal processing technique is proposed for calibrating gain, phase, delay offsets in array antenna based anti-jamming minimum variance distortionless response (MVDR) global-positioning-system (GPS) receivers. The proposed technique estimates gain, phase and delay offsets across the antennas, and compensates for the offsets based on the estimates. A pilot signal with good correlation characteristics is used for accurate estimation of the gain, phase and delay offsets. Based on the cross-correlation, the delay offset is first estimated and then gain/phase offsets are estimated. For fine delay offset estimation and compensation, an interpolation technique is used, and specifically, the discrete Fourier transform (DFT) is employed for the interpolation technique to reduce the computational complexity. The proposed technique is verified through computer simulation using MATLAB. According to the simulation results, the proposed technique can reduce the gain, phaes and delay offset to 0.01 dB, 0.05 degree, and 0.5 ns, respectively.

Discovery of the Dmitri Donskoi ship near Ulleung Island(East Sea of Korea), using geophysical surveys (물리탐사기술을 이용한 침몰선 Dmitri Donskoi호 탐사)

  • Yoo, Hai-Soo;Kim, Su-Jeong;Park, Dong-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.104-111
    • /
    • 2005
  • Dmitri Donskoi, the Russian cruiser launched in 1883, is known to have sunk near Ulleung Island (East Sea, Korea) on May 29, 1905, while it was participating in the Russo-Japanese War. In order to find this ship, information about its possible location was obtained from Russian and Japanese maritime historical records. The supposed location of the ship was identified, and we conducted a five-year geophysical survey from 1999 to 2003. A reconnaissance three-dimensional topographic survey of the sea floor was carried out using multi-beam echo sounder, marine magnetometer, and side-scan sonar. An anomalous body identified through the initial reconnaissance survey was identified by a detailed survey using a remotely operated vehicle, deep-sea camera, and the mini-submarine Pathfinder. Interpretation of the acquired data showed that the ship is hanging on the side of a channel, at the bottom of the sea 400 m below sea level. The location is about 2 km from Port Jeodong, Uleung Island. We discovered 152 mm naval guns and other war materiel still attached to the hull of the ship. In addition, the remnants of the steering gear and other machinery that were burnt during the final action were found near the hull. Strong magnetic fields, resulting from the presence of volcanic rocks in the survey area, affected the resolution of the magnetic data gathered; as a result, we could not locate the ship reliably using the magnetic method. Severe sea floor topography in the gully around the hull gave rise to diffuse reflections in the side-scan sonar data, and this prevented us from identifying the anomalous body with the side-scan sonar technique. However, the sea-floor image obtained from the multi-bean echo sounder was very useful in verifying the location of the ship.

Study on the Radiation Pattern of Radiated Emission above 1 GHz (1 GHz 이상에서의 복사 방출 방사 패턴에 관한 연구)

  • Chung, Yeon-Choon;Lee, Soon-Yong;Kwun, Suk-Tai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.336-344
    • /
    • 2011
  • The purpose of this study is to analyze the radiation-pattern characteristics above 1 GHz for the electromagnetic wave radiated from multi-slot such as ventilations, etc. on the enclosure of an EUT and so to make recommendations for suitable test methods. An experimental EUT was formed by putting a comb-generator at the center of a rectangular enclosure with 4 slots, and its radiation pattern was analyzed in the frequency range of 1~6 GHz. As analysis results, multi-lobe appears above 2 GHz and the number of multi-lobes is growing as the frequency increases. And real radiated-emission measurements were performed for the experimental EUT by scanning a receiving antenna in the height of 1~4 m and tilting toward maximum radiation, as well as setting the height of a receiving antenna to the central position of the EUT which is prescribed at the present standards. The measured results are +12.8 dB in the scanning and +16.4 in the scanning and tilting compared with the present standard test method. Therefore, the latter must be revised in order to consider the radiation pattern above 1 GHz.