• Title/Summary/Keyword: Beam splitting prism

Search Result 4, Processing Time 0.016 seconds

Design of 1× Optical Path Relay Adapter for Beam Splitting Prism used in Day & Night Scope (주야 관측경용 빔 분리프리즘을 위한 1× Optical Path Relay Adapter 설계)

  • Lee, Dong-Hee;Choi, Gyu-Jung;Jung, In;Park, Seung-Hwan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.4
    • /
    • pp.441-447
    • /
    • 2012
  • Purpose: This paper is about development and design of the 1x optical path relay adapter for the beam splitting prism by us the day & night scope. Methods: To product the day & night scope by using the beam splitting prism and the commercial zoom optical system with the C-mount lens barrel structure, the optical path relay adapter, which doesn't change the image size of the zoom optical system and can stretch the position of the image-forming surface, is needed. We could design the 1x optical path relay adapter by using the CodeV program in which the Lens Module mode is offered. Results: We could design the optical path relay adapter used in the day&night scope with the beam splitting prism, of which characteristics have the EFL of -56.0 mm, the magnification of +1.0x, the distance from the 1st lens surface to the last lens surface of about 20.4 mm. The resolution of this system is characterized by 30 lp/mm at 40% MTF. This is enough to accommodate the designed optical path relay adapter can overcome the resolution of the 3rd generation of image intesifier tubes. Conclusions: By designing and applying the optical path relay adapter of which optical characteristics have the EFL of -56.0 mm, the magnification of +1.0x, the distance from the 1st lens surface to the last lens surface of about 20.4 mm, and the resolution of 30 lp/mm at 40% MTF, we could develop the new type day&night scope consisting of the beam splitting, the commercial zoom optical system with the C-mount lens barrel structure, and the 3rd generation of image intesifier tubes.

Development of Day and Night Scope with BS Prism (BS 프리즘을 이용한 주야 조준경 개발)

  • Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.3
    • /
    • pp.339-344
    • /
    • 2014
  • Purpose: This study relates to the development of the day and night scope using the reflecting surface of a BS (beam splitting) prism. Methods: We have placed the LCD panel and the dot reticle generator to the top and bottom of the reflecting surface of the BS prism, and have placed a reflector, which is designed to doublet type, in the front of the BS prism. Doing so, we have developed a new type of day and night scope, which is able to image the virtual image of dot reticle from the dot reticle generator to the direction of the observer, to make the observer survey the peripheral information of the outside target by 1x magnification, and to make the observer survey the image of the LCD panel directly. Results: We could develope a new type of day and night scope, which has the function of night scope as thermal image display device at night time and the function of day scope as dot sight at day time, by letting the reflective surface of the BS prism have the role of dot sight which reflects the dot reticle and have the role of reflective optical system by which the observer surveys the night thermal image displayed in LCD panel. Conclusions: In this study, we have developed the new type of day and night scope which is able to play the role of the day or night scope selectively, combining the existing dot sight and the existing night scope by using the BS prism. By doing so, we could design and fabricate the new type of day and night scope with the BS prism which can further increase the rapidity of firing and provide more convenience in the mounting of a firearm than the detachable combination of an existing dot sight and an existing night scope.

Development of Prism Dot-sight Combined with Thermal Imaging Camera (열영상 카메라가 결합된 프리즘 도트사이트 개발)

  • Park, Seung-Hwan;Jung, Bo-Seon;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.4
    • /
    • pp.479-485
    • /
    • 2014
  • Purpose: This study relates to the development of the prism dot-sight combined with the thermal imaging camera. Methods: We have placed a reflector designed to the doublet type in the front of a BS (beam splitting) prism, have placed an OLED panel and a dot reticle generator to the top and bottom of the reflecting surface of the BS prism, and have placed a detachable magnifier between the BS prism and the observer by which the observer can see the magnified image of the OLED panel. By doing this, we were able to configure the new type prism dot-sight combined with the thermal imaging camera. Results: By placing the removable magnifier designed with a new type between the BS prism and the observer, we could design the new type prism dot-sight which performs the role of the dot sight by removing the magnifier during the day-time, and performs the role of the night scope during the night-time by which we can observe the enlarged image of the thermal imaging camera through the BS prism by attaching the removable magnifier. Conclusions: In this study, we have developed the prism dot-sight combined with the thermal imaging camera which is able to play the role of the day or night scope selectively, by disposing the designed magnifier characterized by the focal length of 44 mm, the viewing angle of ${\pm}7.0^{\circ}$, and the MTF value of 0.5 or more at the criterion of 50 lp/mm and the 0.7 field between the BS prism and the observer. By doing so, we could design and fabricate the new type prism dot-sight combined with the thermal imaging camera which can further increase the rapidity of firing and provide more convenience in the mounting of a firearm than the detachable combination of an existing dot sight and an existing night scope.

Dual Backlight Unit Incorporating a Single Light Source Integrated with a Beam Splitting Reflector (광분할 반사경이 집적된 단일 광원 기반의 통합형 듀얼 백라이트 유닛)

  • Park, Chan-Kyu;Lee, Hak-Soon;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.122-126
    • /
    • 2008
  • Dual backlight unit incorporating a single light source integrated with a beam splitting reflector was demonstrated, providing a surface light beam for both the keypad and the display section simultaneously. The reflector was realized by aligning a groove substrate with a matching cover, and a light guiding module comprising a stack of light guide panels and prism/diffuser sheets was attached to both sides of the reflector. A light emanating from the light source-placed in the middle of the substrate-undergoes a series of reflections through the reflector to reach the input of the light guiding module. Then it is transformed into a surface light beam, which is used to irradiate the keypad and display sections simultaneously. As for the accomplished dual surface light sources, the measured average luminance and the spatial luminance uniformity were respectively about $420\;cd/m^2$ and 69% for the keypad section, and $640\;cd/m^2$ and 79% for the display section.