• Title/Summary/Keyword: Beam on time

Search Result 1,781, Processing Time 0.025 seconds

Effect of Electron Beam Irradiation on the Properties of Softwood Unbleached Kraft Pulp (전자선 전처리에 따른 침엽수 미표백 크라프트 펄프의 특성평가)

  • Kim, Eun Hea;Lee, Ji Young;Jeun, Joon Pyo;Kim, Sun Young;Kim, Chul Hwan;Park, Jong Hye
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.68-73
    • /
    • 2015
  • Electron beam irradiation is also an eco-friendly treatment compared to other physical and chemical treatments. In this study, we attempted to evaluate the possibilities of energy savings by applying electron beam irradiation to the refining process. After softwood unbleached kraft pulp (UKP) was irradiated with electron beams at 50 and 100 kGy, it was beaten in a laboratory beater, and then its freeness and fiber properties were analyzed. The physical properties of their fiber handsheet were also and measured. As the irradiation dose of the electron beam and the beating time increased, lower freeness and fiber lengths of the UKP were observed. Handsheets made from UKP that was irradiated by electron beam and beaten showed a reciprocal relationship with the irradiation dose of the electron beam, in particular, the strength of the handsheets decreased dramatically at 100 kGy of irradiation. Therefore, it was confirmed that electron beam irradiation is effective in reducing the beating time or beating energy. But the irradiation dose must be controlled under 50 kGy to minimize the loss of paper strength.

Seismic behavior of coupled wall structure with innovative quickly replaceable coupling beams

  • Li, Yong;Yu, Haifeng;Liang, Xiaoyong;Yu, Jianjun;Li, Pengcheng;Wang, Wei;Wang, Qizhi
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.293-303
    • /
    • 2022
  • In order to improve the seismic resilience of coupled wall structure, coupling beam with fuse has been developed to reduce the post-earthquake damage. However, the fuses often have a build-up I-shaped section and are relatively heavy to be replaced. Moreover, the fuse and the beam segments are usually connected by bolts and it is time-consuming to replace the damaged fuse. For reducing the repair time and cost, a novel quickly replaceable coupling beam with buckling-restrained energy dissipaters is developed. The fuse of the proposed coupling beam consists of two chord members and bar-typed energy dissipaters placed at the corners of the fuse. In this way, the weight of the energy dissipater can be greatly reduced. The energy dissipaters and the chords are connected with hinge and it is convenient to take down the damaged energy dissipater. The influence of ratio of the length of coupling beam to the length of fuse on the seismic performance of the structure is also studied. The seismic performance of the coupled wall system with the proposed coupling beam is compared with the system with reinforced concrete coupling beams. Results indicated that the weight and post-earthquake repair cost of the proposed fuse can be reduced compared with the typical I-shaped fuse. With the increase of the ratio of the beam length to the fuse length, the interstory drift of the structure is reduced while the residual fuse chord rotation is increased.

The Study on the Implementation of the X-Ray CT System Using the Cone-Beam for the 3D Dynamic Image Acquisition (3D 동영상획득을 위한 Cone-Beam 형 X-Ray CT 시스템 구현에 관한 연구)

  • Jeong, Chan-Woong;Jun, Kyu-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.370-374
    • /
    • 2009
  • In this paper, we presents a new cone beam computerized tomography (CB CT) system for the reconstruction of 3 dimensional dynamic images. The system using cone beam has less the exposure of radioactivity than fan beam, relatively. In the system, the reconstruction 3-D image is reconstructed with the radiation angle of X-ray in the image processing unit and transmitted to the monitor. And in the image processing unit, the Three Pass Shear Matrices, a kind of Rotation-based method, is applied to reconstruct 3D image because it has less transcendental functions than the one-pass shear matrix to decrease a time of calculations for the reconstruction 3-D image in the processor. The new system is able to get 3~5 3-D images a second, reconstruct the 3-D dynamic images in real time.

Vertical Alignment of Liquid Crystal by Ion Beam Irradiation (이온빔 배향에 의한 수직 배향막의 액정 배향)

  • Kang, Dong-Hoon;Kim, Byoung-Yong;Kim, Young-Hwan;Ok, Chul-Ho;Han, Jeong-Min;Kim, Jong-Hwan;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.414-414
    • /
    • 2007
  • In this study, Liquid Crystal (LC) alignment and tilt angle generation in Nematic Liquid Crystal (NLC) with negative dielectric anisotropy on the homeotropic PI surface with new ion beam exposure are reported. Also. high density of ion beam energy (DuoPIGatron type Ar ion gun) is used in this study. The tilt angle of NLC on the homeotropic Polyimide (PI) surface for all incident angles is measured about 38 degree and this has a stabilization trend. And the good LC alignment of NLC on the PI surface with ion beam exposure of $45^{\circ}$ incident angle was observed. Also the tilt angle of NLC on the homeotropic PI surface with ion beam exposure of $45^{\circ}$ had a tendency to decrease as ion beam energy density increase. The tilt angle could be controlled from verticality to horizontality. Also, the LC aligning capabilities of NLC on the homeotropic PI surface according to ion beam energy has the goodness in case of more than 1500 eV. Finally. the superior LC alignment thermal stability on the homeotropic PI surface with ion beam exposure can be achieved. For OCB(Optically Compensated Bend) mode driving, we can need pretilt angles control for fast response time. In this study, We success pretilt angles control. Consequently, this result can be applied for OCB mode.

  • PDF

Reasonably completed state assessment of the self-anchored hybrid cable-stayed suspension bridge: An analytical algorithm

  • Kai Wang;Wen-ming Zhang;Jie Chen;Zhe-hong Zhang
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.159-175
    • /
    • 2024
  • In order to solve the problem of calculating the reasonable completed bridge state of a self-anchored hybrid cable-stayed suspension bridge (SA-HCSB), this paper proposes an analytical method. This method simplifies the main beam into a continuous beam with multi-point rigid supports and solves the support reaction forces. According to the segmented catenary theory, it simultaneously solves the horizontal forces of the main span main cables and the stay cables and iteratively calculates the equilibrium force system on the main beam in the collaborative system bridge state while completing the shape finding of the main span main cable and stay cables. Then, the horizontal forces of the side span main cables and stay cables are obtained based on the balance of horizontal forces on the bridge towers, and the shape finding of the side spans are completed according to the segmented catenary theory. Next, the difference between the support reaction forces of the continuous beam with multiple rigid supports obtained from the initial and final iterations is used to calculate the load of ballast on the side span main beam. Finally, the axial forces and strains of each segment of the main beam and bridge tower are obtained based on the loads applied by the main cable and stay cables on the main beam and bridge tower, thereby obtaining analytical data for the bridge in the reasonable completed state. In this paper, the rationality and effectiveness of this analytical method are verified through a case study of a SA-HCSB with a main span of 720m in finite element analysis. At the same time, it is also verified that the equilibrium force of the main beam under the reasonably completed bridge state can be obtained through iterative calculation. The analytical algorithm in this paper has clear physical significance, strong applicability, and high accuracy of calculation results, enriching the shape-finding method of this bridge type.

Effectiveness of piezoelectric fiber reinforced composite laminate in active damping for smart structures

  • Chahar, Ravindra Singh;Ravi Kumar, B.
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.387-396
    • /
    • 2019
  • This paper deals with the effect of ply orientation and control gain on tip transverse displacement of functionally graded beam layer for both active constrained layer damping (ACLD) and passive constrained layer damping (PCLD) system. The functionally graded beam is taken as host beam with a bonded viscoelastic layer in ACLD beam system. Piezoelectric fiber reinforced composite (PFRC) laminate is a constraining layer which acts as actuator through the velocity feedback control system. A finite element model has been developed to study actuation of the smart beam system. Fractional order derivative constitutive model is used for the viscoelastic constitutive equation. The control voltage required for ACLD treatment for various symmetric ply stacking sequences is highest in case of longitudinal orientation of fibers of PFRC laminate over other ply stacking sequences. Performance of symmetric and anti-symmetric ply laminates on damping characteristics has been investigated for smart beam system using time and frequency response plots. Symmetric and anti-symmetric ply laminates significantly reduce the amplitude of the vibration over the longitudinal orientation of fibers of PFRC laminate. The analysis reveals that the PFRC laminate can be used effectively for developing very light weight smart structures.

Analysis of Female Windsurfers' Performance Using Global Positioning System Information During Competitions (여자 윈드서핑 선수의 경기 중 Global Positioning System 정보를 활용한 경기력 분석)

  • Chun, Sa Bin;Park, Jong Chul;Park, Sang Ha;Kim, Jin Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.162-167
    • /
    • 2021
  • Objective: This study aimed to identify the different wind speed categories and competitive level among windsurfers through GPS variables to provide the useful information on the development of training programs for enhancing windsurfers' performance. Method: Data from 69 female athletes who participated in 27 races during the 2018-2019 windsurfing season were used for the analysis. Average board speed, total race time, total distance, upwind race time, downwind race time, beam reach race time were collected through GPS. Unconfirmed data were excluded along with penalty point data. The wind conditions were classified as light, light to medium, medium, medium to heavy, and heavy wind, the competitive levels were classified as level 1, level 2, and level 3. Results: As for the average board speed, the level 1 or level 2 group showed higher board speed than the level 3 group in all wind conditions except for the light wind. The total race time and upwind race time showed less time in level 1 or level 2 group than level 3 group in all wind conditions. The total distance, downwind race time and beam reach race time showed less distance and time in level1 group than level 3 group under sufficient wind conditions. Conclusion: Our results show that the aerobic capacity to sustain pumping during upwind course in wind conditions below 15 kts effects performance. In wind conditions of 15 kts or more, indicated that the board control for the fast board speed and small distance required during up, down, beam reach courses had an effect on competition performance. This information can be provided to windsurfers and coaching as basic data for training programs to improve performance.

Experimental study of the behavior of beam-column connections with expanded beam flanges

  • Ma, Hongwei;Wang, Jiwei;Lui, Eric M.;Wan, Zeqing;Wang, Kun
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.319-327
    • /
    • 2019
  • This paper describes an experimental study of steel beam-column connections with or without expanded beam flanges with different geometries. The objectives of this study are to elucidate the cyclic behavior of these connections, identify the location of the plastic hinge zone, and provide useful test data for future numerical simulations. Five connection specimens are designed and tested under cyclic load. The test setup consists of a beam and a column connected together by a connection with or without expanded beam flanges. A constant axial force is applied to the column and a time varying point load is applied to the free end of the beam, inducing shear and moment in the connection. Because the only effect to be studied in the present work is the expanded beam flange, the sizes of the beam and column as well as the magnitude of the axial force in the column are kept constant. However, the length, width and shape of the expanded beam flanges are varied. The responses of these connections in terms of their hysteretic behavior, failure modes, stiffness degradation and strain variations are experimentally obtained and discussed. The test results show that while the influence of the expanded beam flanges on hysteretic behavior, stiffness degradation and energy dissipation capacity of the connection is relatively minor, the size of the expanded beam flanges does affect the location of the plastic hinge zone and strain variations in these beam-column joints. Furthermore, in terms of ductility, moment and rotational capacities, all five connections behave well. No weld fracture or premature failure occurs before the formation of a plastic hinge in the beam.

Effects of Proton Beam Irradiation on Germination and Growth of Tobacco and Rice Plants (담배와 벼의 발아와 생장에 대한 Proton 빔조사의 영향)

  • Lyu Jae-Il;Sarantuya Gendaram;Chai Jong-Seo;Kim Jae-Hong;Yang Tae-Gun;Lee Min-Yong;Yang Deok-Chun;Bae Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.18 no.3
    • /
    • pp.462-469
    • /
    • 2005
  • Effects of proton beam irradiation on seed germination and growth pattern of tobacco (Nicotiana tabacum L. cv. BY-4; N. plumbaginifolia) and rice (Oryasativa L.) plants were estimated to develop the efficient conditions of irradiation. Seed germination rate was decreased by increasing the proton beam the current and the beam irradiation time in both tobacco and rice seeds. The beam irradiation conditions showing $50\%$ germination were over 60 sec at 10 nA, approximately 5 sec at 100 nA and at 500 nA beam current in tobacco seeds. And the conditions of $50\%$ germination were 60 sec at 10 nA, and 100 nA and 30 sec at 500nA in rice (cv. Dongjin 1) seeds. The growth of irradiated plants was decreased, but significant difference in morphological changes was not observed by the proton beam treatment. The proton beam is able to use as a mutagen, but some of the factors including beam size and beam detector-system must be established for efficient usage of the beam.

ASSESSMENT OF BONE DENSITY ON MAXILLA AFTER IMPLANTATION WITH CONE BEAM COMPUTED TOMOGRAPHY (Cone Beam Computed Tomography를 이용한 상악 임플란트 식립 전후의 골밀도 변화에 관한 연구)

  • Choi, Jeong-Hun;Lee, Ju-Min;Kim, Yong-Deok;Shin, Sang-Hun;Chung, In-Kyo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.3
    • /
    • pp.229-235
    • /
    • 2010
  • Purpose: This study examined the significance of increased bone density according to time after implantation on maxilla using demographic data with CBCT and compared the bone density between before vs. after implantation using the Hounsfield index. Materials and Methods: Twenty-five implant site on maxilla were selected. Cone-beam computerized tomography (CBCT) scans were used for the analysis. The implant sites were evaluated digitally using the Hounsfield scale with EzImplant TM and the results were compared over time. Statistical data over time was carried out to determine the correlation between the recorded Hounsfield unit (HU) over time and gender difference using repeated ANOVA. Results: The bone density of implantation site over time showed an increase in the HU mean values. Immediately after implantation, bone density was significantly increased than bone density before implantation. Until 6 month follow-up, bone density showed stable increasement. There is no significant difference on gender. Conclusions: Using CBCT, bone density increased over time after implantation on maxilla. Bone density measurements using CBCT might provide an objective assessment of the bone quality as well as the correlation between bone density and stability of implant.