• Title/Summary/Keyword: Beam Vibration

Search Result 2,145, Processing Time 0.026 seconds

Effects of dead loads on dynamic analyses of beams

  • Takabatake, Hideo
    • Earthquakes and Structures
    • /
    • v.1 no.4
    • /
    • pp.411-425
    • /
    • 2010
  • The effect of dead loads on dynamic responses of uniform elastic beams is examined by means of a governing equation which takes into account initial bending stress due to dead loads. First, the governing equation of beams which includes the effect of dead loads is briefly presented from the author's paper (Takabatake 1990). In the formulation the effect of dead loads is considered by strain energy produced by conservative initial stresses produced by the dead loads. Second, the effect of dead loads on dynamical responses produced by live loads in simply supported beams and clamped beams is confirmed by the results of numerical computations with the Galerkin method and Wilson-${\theta}$ method. It is shown that the dynamical responses, like dynamic deflections and bending moments produced by dynamic live loads, are decreased in a heavyweight beam when the effect of dead loads is included. Third, an approximate solution for dynamic deflections including the effect of dead loads is presented in closed-form. The proposed solution shows good in agreement with results of numerical computations with the Galerkin method and Wilson-${\theta}$ method. Finally, a method reflecting the effect of dead loads for dynamic responses of beams on the magnitude of live loads is presented by an example.

A Study on the Response of the Motions and Strength of Ships in Waves taking account of Non-linerities (비선형을 고려한 파랑중 선체 운동과 강도 응답에 관한 연구)

  • C.Y.,Kim;J.A.,Kim;S.S.,Kim;B.K.,Hong;D.M.,Bae
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.1
    • /
    • pp.51-66
    • /
    • 1987
  • In this paper, the authors investigate theoretically the motion and longitudinal strength of ships among waves talking account of the effects of nonlinearities such as the hull shape, bottom emergence, and hydrodynamic impact. Incidentally the ship is treated as an elastic beam in heading wave condition regarding characteristics of slamming and whipping-according to the variation in the range of a quarter length of the ship forward and the increase of the elastic modes up to 4-th vibration mode were investigated by the present theory. Calculations are performed for 97m container ship and its validity is confirmed by a series of model tests. Conclusions obtained are as follows; 1) Acceleration and pressure estimated by the present theory are in good accordance with experiments. 2) The present non-linear theory may be applied for estimating longitudinal bending moment of ships in slamming and whipping conditions. 3) In investigation of the characteristic in response according to shape variation for parts under draft and vow-flare in the range of a quarter length of the ship forward, dynamic responses due to the former were much more conspicuous than those due to the later. 4) In the maximum bending moment, the considering case up to 2-the mode are larger, about $10{\sim}15%$, than that up to 4-th mode.

  • PDF

Vibration Analysis of Stiffened Plates having a Resiliently Mounted or Concentrated Mass (탄성지지부가물(彈性支持附加物) 또는 집중질량(集中質量)을 갖는 보강판(補剛板)의 진동해석(振動解析))

  • S.Y.,Han;K.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.1
    • /
    • pp.23-32
    • /
    • 1986
  • By virtue of an application of the receptance method, simplified formulae to calculate natural frequencies of stiffened plates having a resiliently mounted or concentrated mass are obtained. Some numerical results are compared with those based on Lagrange's equation of motion and with experimental results. For the problem formulation the stiffened plate is reduced to an equivalent orthotropic plate, a resiliently mounted mass to a spring-mass system, and mode shapes of the plate are assumed with comparison functions consisting of Euler beam functions. The proposed formulae give results in good conformity to both numerical results based on Lagrange's equation of motion and experimental results for in-phase modes of the coupled system. For out-of-phase modes the conformity is assured only in case that the natural frequency of the attached system is less than a half of that the stiffened plate. It is also found that a resiliently mounted mass having its own natural frequency of about two or more times that of the stiffened plate can be reduced to a concentrated mass with assurance of a few percent error in the frequency.

  • PDF

A new bridge-vehicle system part II: Parametric study

  • Chan, Tommy H.T.;Yu, Ling;Yung, T.H.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.21-38
    • /
    • 2003
  • The formulation of a new bridge-vehicle system using shell with eccentric beam elements has been introduced in a companion paper (Part I). The new system takes into account of the contribution of the twisting and pitching modes of vehicles to the bridge responses. It can also be used to study the dynamic transverse load distribution of a bridge. This paper presents a parametric study on the impact induced by one vehicle or multi-vehicle running across a bridge using the proposed model. Several parameters were considered as variables including the mass ratio, the speed parameter, the frequency ratio and the axle spacing parameter to investigate their effects on the impact factor. A total number of 189 cases were carried out in this parametric study. Within the realistic range of vehicle considered, the maximum impact factors could be 2.24, 1.78 and 1.49 for bridges with spans 10 m, 20 m and 30 m respectively.

3-Dimensional Static and Dynamic Analysis of Soil-Framework Interaction System (지반-골조구조물 상호작용계의 3차원 정.동적 해석)

  • 서상근;장병순
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.243-254
    • /
    • 1997
  • When dynamic loads such as mechanical load, wind load, and seismic load, which causing a vibration, acts on the body of the 3-D framework resting on soil foundation, it is required to consider the dynamic behavior of soil-space framework interation system. Thus, this study presents the 3-dimensional soil-interaction system analyzed by finite element method using 4-node plate elements with flexibility, 2-node beam elements, and 8-node brick elements for the purpose of idealizing an actual structure into a geometric shape. The objective of this study is the formulation of the equation for a dynamic motion and the development of the finite element program which can analyze the dynamic behavior of soil-space framework interaction system.

  • PDF

Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate

  • Avsar, Ahmet Levent;Sahin, Melin
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.249-265
    • /
    • 2016
  • A bimorph piezoelectric energy harvester is developed for harvesting energy under the vortex induced vibration and it is integrated to a host structure of a trapezoidal plate without changing its passive dynamic properties. It is aimed to select trapezoidal plate as similar to a vertical fin-like structure which could be a part of an air vehicle. The designed energy harvester consists of an aluminum beam and two identical multi fiber composite (MFC) piezoelectric patches. In order to understand the dynamic characteristic of the trapezoidal plate, finite element analysis is performed and it is validated through an experimental study. The bimorph piezoelectric energy harvester is then integrated to the trapezoidal plate at the most convenient location with minimal structural displacement. The finite element model is constructed for the new combined structure in ANSYS Workbench 14.0 and the analyses performed on this particular model are then validated via experimental techniques. Finally, the energy harvesting performance of the bimorph piezoelectric energy harvester attached to the trapezoidal plate is also investigated through wind tunnel tests under the air load and the obtained results indicate that the system is a viable one for harvesting reasonable amount of energy.

Approximate evaluations and simplified analyses of shear- mode piezoelectric modal effective electromechanical coupling

  • Benjeddou, Ayech
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.275-302
    • /
    • 2015
  • Theoretical and numerical assessments of approximate evaluations and simplified analyses of piezoelectric structures transverse shear modal effective electromechanical coupling coefficient (EMCC) are presented. Therefore, the latter is first introduced theoretically and its approximate evaluations are reviewed; then, three-dimensional (3D) and simplified two-dimensional (2D) plane-strain (PStrain) and plane-stress (PStress) piezoelectric constitutive behaviors of electroded shear piezoceramic patches are derived and corresponding expected short-circuit (SC) and open-circuit (OC) frequencies and resulting EMCC are discussed; next, using a piezoceramic shear sandwich beam cantilever typical benchmark, a 3D finite element (FE) assessment of different evaluation techniques of the shear modal effective EMCC is conducted, including the equipotential (EP) constraints effect; finally, 2D PStrain and PStress FE modal analyses under SC and OC electric conditions, are conducted and corresponding results (SC/OC frequencies and resulting effective EMCC) are compared to 3D ones. It is found that: (i) physical EP constraints reduce drastically the shear modal effective EMCC; (ii) PStress and PStrain results depend strongly on the filling foam stiffness, rendering inadequate the use of popular equivalent single layer models for the transverse shear-mode sandwich configuration; (iii) in contrary to results of piezoelectric shunted damping and energy harvesting popular single-degree-of-freedom-based models, transverse shear modal effective EMCC values are very small in particular for the first mode which is the common target of these applications.

A novel two-dimensional approach to modelling functionally graded beams resting on a soil medium

  • Chegenizadeh, Amin;Ghadimi, Behzad;Nikraz, Hamid;Simsek, Mesut
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.727-741
    • /
    • 2014
  • The functionally graded beam (FGB) is investigated in this study on both dynamic and static loading in case of resting on a soil medium rather than on the usual Winkler-Pasternak elastic foundation. The powerful ABAQUS software was used to model the problem applying finite element method. In the present study, two different soil models are taken into account. In the first model, the soil is assumed to be an elastic plane stress medium. In the second soil model, the Drucker-Prager yield criterion, which is one of the most well-known elastic-perfectly plastic constitutive models, is used for modelling the soil medium. The results are shown to evaluate the effects of the different soil models, stiffness values of the elastic soil medium on the normal and shear stress and free vibration properties. A comparison was made to those from the existing literature. Numerical results show that considering real soil as a continuum space affects the results of the bending and the modal properties significantly.

Study on the Electron Transport Coefficient in Mixtures of $CF_4$ and Ar ($CF_4-Ar$ 혼합기체의 전자수송계수에 관한 연구)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Study on the electron transport coefficient in mixtures of CF4 and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CF_4$ and Ar, were used. The differences of the transport coefficients of electrons in $CF_4$ mixtures of Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, $f({\varepsilon})$ has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures. A two-term approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

Analysis of the Mean Energy in $SiH_4-Ar$ Mixture Gases ($SiH_4-Ar$ 혼합기체의 평균 에너지에 관한 연구)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.2
    • /
    • pp.57-61
    • /
    • 2006
  • This paper calculates and gives the analysis of mean energy in pure $SiH_4,\;Ar-SiH_4$ mixture gases ($SiH_4-0.5[%],\;5[%]$) over the range of $E/N =0.01{\sim}300[Td]$, p = 0.1, 1, 5.0 [Torr] by Monte Carlo the Backward prolongation method of the Boltzmann equation using computer simulation without using expensive equipment. The results have been obtained by using the electron collision cross sections by TOF, PT, SST sampling, compared with the experimental data determined by the other author. It also proved the reliability of the electron collision cross sections and shows the practical values of computer simulation. The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $SiH_4$ and Ar, were used. The differences of the transport coefficients of electrons in $SiH_4$, mixtures of $SiH_4$ and Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. A two-term approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.