• Title/Summary/Keyword: Beam Shaping Mask

Search Result 6, Processing Time 0.019 seconds

Control of Intensity Distribution Profile of Laser Beam using Beam Shaping Mask with Random Array Slits (빔셰이퍼 마스크를 이용한 레이저 빔의 강도 분포 제어)

  • Oh, Jae-Yong;Park, Deog-Su;Shin, Bo-Sung
    • Laser Solutions
    • /
    • v.15 no.2
    • /
    • pp.11-14
    • /
    • 2012
  • In this paper, we have made a proposal concerning the beam shaping mask(BSM) using random-array slits to control intensity distribution profile of laser beam and demonstrated its proprieties experimentally. When a lot of slits are set out irregularly, diffraction patterns of light does not appear but granularity patterns as a bundle of fibers appear. Intensity distribution profile is controlled by densities distribution of circular slits arrayed randomly because the number of slits and its area means amount of light energy through BSM. Namely as the number of slits in high intensity area is increased and that in low intensity area decreased, amount of light energy is same over all local parts. So gaussian intensity distribution could be changed to flat-top.

  • PDF

Study of ion beam shaping of an anode-type ion source coupled with a Whenelt mask

  • Huh, Yunsung;Hwang, Yunseok;Kim, Jeha
    • Applied Science and Convergence Technology
    • /
    • v.27 no.4
    • /
    • pp.70-74
    • /
    • 2018
  • We fabricated an anode-type ion source driven by a charge repulsion mechanism and investigated its beam shape controlled by a Whenelt mask integrated at the front face of the source. The ion beam shape was observed to vary by changing the geometry of the Whenelt mask. As the angle of inclination of the Whenelt mask was varied from $40^{\circ}$ to $60^{\circ}$, the etched area at a thin film was reduced from 20 mm to 7.5 mm at the working distance of 286 mm, and the light transmittance through the etched surface was increased from 78% to 80%, respectively. In addition, for the step height difference, ${\Delta}$ between the inner mask and the outer mask of ${\Delta}=0$, -1 mm, and +1 mm, we observed the ion beam shape was formed to be collimated, diverged, and focused, respectively. The focal length of the focused beam was 269 mm. We approved experimentally a simple way of controlling the electric field of the ion beam by changing the geometry of the Whenelt mask such that the initial direction of the ion beam in the plasma region was manipulated effectively.

DPSS UV laser projection ablation of 10μm-wide patterns in a buildup film using a dielectric mask (Dielectric 마스크 적용 UV 레이저 프로젝션 가공을 이용한 빌드업 필름 내 선폭 10μm급 패턴 가공 연구)

  • Sohn, Hyonkee;Park, Jong-Sig;Jeong, Su-Jeong;Shin, Dong-Sig;Choi, Jiyeon
    • Laser Solutions
    • /
    • v.16 no.3
    • /
    • pp.27-31
    • /
    • 2013
  • To engrave high-density circuit-line patterns in IC substrates, we applied a projection ablation technique in which a dielectric ($ZrO_2/SiO_2$) mask, a DPSS UV laser instead of an excimer laser, a refractive beam shaping optics and a galvo scanner are used. The line/space dimension of line patterns of the dielectric mask is $10{\mu}m/10{\mu}m$. Using a ${\pi}$ -shaper and a square aperture, the Gaussian beam from the laser is shaped into a square flap-top beam; and a telecentric f-${\theta}$ lens focuses it to a $115{\mu}m{\times}105{\mu}m$ flat-top beam on the mask. The galvo scanner before the f-${\theta}$ lens moves the beam across the scan area of $40mm{\times}40mm$. An 1:1 projection lens was used. Experiments showed that the widths of the engraved patterns in a buildup film ranges from $8.1{\mu}m$ to $10.2{\mu}m$ and the depths from $8.8{\mu}m$ to $11.7{\mu}m$. Results indicates that it is required to increase the projection ratio to enhance profiles of the engraved patterns.

  • PDF

Direct UV laser projection ablation to engrave 6㎛-wide patterns in a buildup film (빌드업 필름의 선폭 6㎛급 패턴 가공을 위한 직접식 UV 레이저 프로젝션 애블레이션)

  • Sohn, Hyonkee;Park, Jong-Sig;Jeong, Jeong-Su;Shin, Dong-Sig;Choi, Jiyeon
    • Laser Solutions
    • /
    • v.17 no.3
    • /
    • pp.19-23
    • /
    • 2014
  • To directly engrave circuit-line patterns as wide as $6{\mu}m$ in a buildup film to be used as an IC substrate, we applied a projection ablation technique in which an 8 inch dielectric ($ZrO_2/SiO_2$) mask, a DPSS 355nm laser instead of an excimer laser, a ${\pi}$-shaper and a galvo scanner are used. With the ${\pi}$-shaper and a square aperture, the Gaussian beam from the laser is shaped into a square flap-top beam. The galvo scanner before the $f-{\theta}$ lens moves the flat-top beam ($115{\mu}m{\times}105{\mu}m$) across the 8 inch dielectric mask whose patterned area is $120mm{\times}120mm$. Based on the results of the previous research by the authors, the projection ratio was set at 3:1. Experiments showed that the average width and depth of the engraved patterns are $5.41{\mu}m$ and $7.30{\mu}m$, respectively.

  • PDF

Patterning of ITO on Touch Screen Panels using a beam shaped femtosecond laser (빔 쉐이핑된 펨토초 레이저를 이용한 터치스크린 패널의 ITO 박막 패터닝)

  • Kim, Myung-Ju;Kim, Yong-Hyun;Yoon, Ji-Wook;Choi, Won-Seok;Cho, Sung-Hak;Choi, Jiyeon
    • Laser Solutions
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2013
  • Femtosecond laser patterning of ITO on a touch screen panel with a shaped fs laser beam was investigated. A quasi flat-top beam was formed using a variable mask and a planoconvex lens. The spatial profile of the original Gaussian beam and the shaped beam were monitored by a CCD beam profiler. The laser patterned ITO film was examined using an optical microscope, Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), and Atomic Force Microscope (AFM). It turned out that the quality of the ITO pattern fabricated by a shaped beam is superior to that of the pattern without beam shaping in terms of debris generation, height of the craters, and homogeneity of the bottom. Optimum processing window was determined at the laser irradiance exhibiting 100% removal of Sn. The removal rate of In was measured to be 83%.

  • PDF

Shaded-Mask Filtering for Extended Depth-of-Field Microscopy

  • Escobar, Isabel;Saavedra, Genaro;Martinez-Corral, Manuel;Calatayud, Arnau;Doblas, Ana
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.2
    • /
    • pp.139-146
    • /
    • 2013
  • This paper proposes a new spatial filtering approach for increasing the depth-of-field (DOF) of imaging systems, which is very useful for obtaining sharp images for a wide range of axial positions of the object. Many different techniques have been reported to increase the depth of field. However the main advantage in our method is its simplicity, since we propose the use of purely absorbing beam-shaping elements, which allows a high focal depth with a minimum modification of the optical architecture. In the filter design, we have used the analogy between the axial behavior of a system with spherical aberration and the transverse impulse response of a 1D defocused system. This allowed us the design of a ring-shaded filter. Finally, experimental verification of the theoretical statements is also provided.