• Title/Summary/Keyword: Beam Radiation

Search Result 1,761, Processing Time 0.038 seconds

Construction and Testing of a radiation-beam powered TA (ThermoAcoustic) washer for grease removal

  • Chen, Kuan;DaCosta, David H.;Kim, Yeongmin;Oh, Seung Jin;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.21-28
    • /
    • 2015
  • A small washer powered directly and solely by thermal radiation was constructed and tested to explore the feasibility of using solar energy or other types of thermal radiation for washing and cleaning. In principle, TA (ThermoAcoustic) washers have the benefits of simpler design and operation and fewer energy conversion processes, thus should be more energy efficient and cost less than electric washing/cleaning systems. The prototype TA converter we constructed could sustain itself with consistent fluid oscillations for more than 20 minutes when powered by either concentrated solar radiation or an IR (infrared) heater. The frequencies of water oscillations in the wash chamber ranged from 2.6 to 3.6 Hz. The overall conversion efficiency was lower than the typical efficiencies of TA engines. Change in water temperature had little effect on the oscillatory flow in the TA washer due to its low efficiency. On the other hand higher water temperatures enhanced grease removal considerably in our tests. Methods for measuring the overall conversion efficiency, frictional loss, and grease removal of the TA washing system we designed were developed and discussed.

X-Rays through the Looking Glass: Mobile Imaging Dosimetry and Image Quality of Suspected COVID-19 Patients

  • Schelleman, Alexandra;Boyd, Chris
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.120-126
    • /
    • 2021
  • Background: This paper aims to evaluate the clinical utility and radiation dosimetry, for the mobile X-ray imaging of patients with known or suspected infectious diseases, through the window of an isolation room. The suitability of this technique for imaging coronavirus disease 2019 (COVID-19) patients is of particular focus here, although it is expected to have equal relevance to many infectious respiratory disease outbreaks. Materials and Methods: Two exposure levels were examined, a "typical" mobile exposure of 100 kVp/1.6 mAs and a "high" exposure of 120 kVp/5 mAs. Exposures of an anthropomorphic phantom were made, with and without a glass window present in the beam. The resultant phantom images were provided to experienced radiographers for image quality evaluation, using a Likert scale to rate the anatomical structure visibility. Results and Discussion: The incident air kerma doubled using the high exposure technique, from 29.47 µGy to 67.82 µGy and scattered radiation inside and outside the room increased. Despite an increase in beam energy, high exposure technique images received higher image quality scores than images acquired using lower exposure settings. Conclusion: Increased scattered radiation was very low and can be further mitigated by ensuring surrounding staff are appropriately distanced from both the patient and X-ray tube. Although an increase in incident air kerma was observed, practical advantages in infection control and personal protective equipment conservation were identified. Sites are encouraged to consider the use of this technique where appropriate, following the completion of standard justification practices.

Verification of Dose Distribution for Stereotactic Radiosurgery with a Linear Accelerator (선형가속기를 이용한 방사선 수술의 선량분포의 실험적 확인)

  • Park Kyung Ran;Kim Kye Jun;Chu Sung Sil;Lee Jong Young;Joh Chul Woo;Lee Chang Geol;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.421-430
    • /
    • 1993
  • The calculation of dose distribution in multiple arc stereotactic radiotherapy is a three-dimensional problem and, therefore, the three-dimensional dose calculation algorithm is important and the algorithm's accuracy and reliability should be confirmed experimentally. The aim of this study is to verify the dose distribution of stereotactic radiosurgery experimentally and to investigate the effect of the beam quality, the number of arcs of radiation, and the tertiary collimation on the resulting dose distribution. Film dosimetry with phantom measurements was done to get the three-dimensional orthogonal isodose distribution. All experiments were carried out with a 6 MV X-ray, except for the study of the effects of beam energy on dose distribution, which was done for X-ray energies of 6 and 15 MV. The irradiation technique was from 4 to 11 arcs at intervals of from 15 to 45 degrees between each arc with various field sizes with additional circular collimator. The dose distributions of square field with linear accelerator collimator compared with the dose distributions obtained using circular field with tertiary collimator. The parameters used for comparing the results were the shape of the isodose curve, dose fall-offs fom $90\%$ to $50\%$ and from $90\%\;to\;20\%$ isodose line for the steepest and shallowest profile, and $A=\frac{90\%\;isodose\;area}{50\%\;isodose\;area-90\%\;isodose\;area}$(modified from Chierego). This ratio may be considered as being proportional to the sparing of normal tissue around the target volume. The effect of beam energy in 6 and 15 MV X-ray indicated that the shapes of isodose curves were the same. The value of ratio A and the steepest and shallowest dose fall-offs for 6 MV X-ray was minimally better than that for 15 MV X-ray. These data illustrated that an increase in the dimensions of the field from 10 to 28 mm in diameter did not significantly change the isodose distribution. There was no significant difference in dose gradient and the shape of isodose curve regardless of the number of arcs for field sizes of 10, 21, and 32 mm in diameter. The shape of isodose curves was more circular in circular field and square in square field. And the dose gradient for the circular field was slightly better than that for the square field.

  • PDF

Theoretical Analysis on the Array Microphone Measurement for Noise from Rails (배열 마이크로폰을 이용한 레일 방사 소음 측정에 관한 이론 해석)

  • Ryue, Jungsoo;Jang, Seungho;Kwon, Hyu-Sang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.238-247
    • /
    • 2014
  • In this paper, rail vibration and its sound radiation are investigated, then the rail noise measurement by using microphone array is explored theoretically. A concrete slab track for domestic high speed trains is modeled as a Timoshenko beam on elastic support, regarding the moving of the excitation force on the rail. From the radiation characteristics of rail noise generated by a line source, the effect of moving load on sound radiation is obtained. Also it is found that the beam angle of the microphone array is a prominent factor to measure the rail noise level reliably because the rail noise propagates as a plane wave. In this investigation, a proper beam angle for the rail noise measurement by microphone array is suggested.

INFRARED EMISSION FROM SPHERICAL DUST CLOUDS

  • Lee, Hyung-Mok;Hong, Seung-Soo;Yun, Hong-Sik;Lee, Sang-Gak
    • Journal of The Korean Astronomical Society
    • /
    • v.25 no.2
    • /
    • pp.111-128
    • /
    • 1992
  • Infrared emissions from spherical dust, clouds are calculated using quasi-diffusion method. We have employed graphite-silicate mixture with power-law size distribution for the dust model. The grains are assumed to be heated and cooled by radiative processes only. The primary heating source is diffuse interstellar radiation field. hut the cases with an embedded source are also considered. Since graphite grains have higher temperature than silicate grains, the observed IR emission is mainly due to graphite grains, unless the fraction of graphite grains is negligibly small. The color temperature of Bok globules obtained from IRAS 60 and $100{\mu}m$ data are found to be consistent with the dust cloud with graphite-silicate mixture exposed to average interstellar radiation field. The color temperature is sensitive to the external radiation field, but rather insensitive to the size distribution of the grains. We found that the density distribution can be recovered outside the beam size using the inversion technique that assumes negligible optical depth. However, the information within the beam size is lost for if beam convolved intensity distributions are used in deriving density profile.

  • PDF

Effect of Electron Beam and ${\gamma}$-Ray Irradiation on the Curing of Epoxy Resin

  • Kang, Phil-Hyun;Park, Jong-Seok;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.332-338
    • /
    • 2002
  • The effect of an electron beam and ${\gamma}$-ray irradiation on the curing of epoxy resins was investigated. Diglycidyl ether of bisphenol A (DGEBA) and diglycidyl ether of bisphenol F (DGEBF) as epoxy resin were used. The epoxy resins containing 1.0-3.() wt% of triarylsulphonium hexafluoroantimonate(TASHFA) and triarylsulphonium hexafluorophosphate(TASHFP) as initiator were irradiated under nitrogen at room temperature with different dosage of EB and ${\gamma}$-rays from a Co$^{60}$ u source. The chemical and mechanical characteristics of irradiated epoxy resins were compared after curing of EB and ${\gamma}$-ray irradiation. The thermal properties of cured epoxy were investigated using dynamic mechanical thermal analysis. The chemical structures of cured epoxy were characterized using near infrared spectroscopy. Mechanical properties such as flexural strength, modulus were measured. The gel fraction of DGEBA with ${\gamma}$-ray was higher than that of the epoxy with EB at the same dose. Young's modulus of the sample irradiated by ${\gamma}$-ray is higher than that of sample cured by EB. From the result of strain at yield, it was found that the epoxy cured by ${\gamma}$-ray had a higher stiff property compared with the irradiated by EB.

The Physical Penumbra of the 6MV X-ray (6MV 방사선의 물리학적 Penumbra)

  • Cho Moon-June;Kang Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.9 no.2
    • /
    • pp.333-336
    • /
    • 1991
  • High energy Photon beam has a sharp beam margin due to a less side scatter and the other things. But there still remains a penumbra where the dose changes rapidly in the region near the edge of a radiation beam, although it is short in width. It is suggested that the width of the penumbra depends on the source size, distance from source to diaphragm, source to skin distance, and depth in tissue. However, it is also supposed that the other factors influence the penumbra width. In this paper, we investigate changes of the physical penumbra widths according to various field sizes and depths, by using the three dimensional dosimetry system. As a result, we found that as field size and depth increase, the physical penumbra width also increases.

  • PDF

Modified Five Field Technique for Primary and Postop Breast Cancer Irradiation (유방암에서의 근치적 또는 수술후 방사선 치료방법 : 5문 조사법)

  • Choi, Eun-Kyung;Chang, Hye-Sook;Yi, Byong-Yong
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.165-170
    • /
    • 1991
  • In breast cancer, the treatment volume presents a relatively complex three dimensional structure. Effective radiation therapy requires the delivery of adequate dose to a large target volume using complex beam arrangements. The technique proposed here is our department's method using asymmetric jaw with appropriate couch, collimator and gantry rotation. This technique has the following advantages: 1) all treatments are given in a single clinical set up 2) it does not require half beam blocks 3) it produces exact geomatric match 4) it is very convenient and easy to use 5) it has daily reproducibility.

  • PDF

Distribution of Antibiotic Resistant Microbes in Aquaculture Effluent and Disinfection by Electron Beam Irradiation (양식장 배출수중의 항생제 내성균 분포 및 전자빔 살균처리)

  • Jang, Eun-Hee;Lim, Seung-Joo;Kim, Tak-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.492-500
    • /
    • 2011
  • Antibiotic resistant microbes were isolated in catfish, trout, eel and loach aquaculture effluent. The distribution of antibiotic resistant microbes in aquaculture effluent and the disinfection efficiency of antibiotic resistant microbes by electron beam irradiation were investigated. It was shown that the multi-drug resistant bacteria were Aeromonas sp., Citrobacter sp., Bacillus sp., Marinobacter sp., Pantoea sp., Pseudomonas sp. and Enterobacter sp. in aquaculture effluent. 41.7% of total strains showed the resistance against one antibiotic agent, and 58.3% of total strains showed the resistance against more than two antibiotics. It was evidently shown that the toxicity and physicochemical properties of antibiotics can be estimated using Quantitative Structure Analysis Relationship (QSAR). Electron beam irradiation was very effective for the disinfection of antibiotic resistant bacteria from aquaculture effluent, in which the disinfection efficiency was approximately 99.9% with electron beam of 1 kGy.

Photon dose calculation of pencil beam kernel based treatment planning system compared to the Monte Carlo simulation

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Kim, Hoi-Nam;Lee, Hyoung-Koo;Choe, Bo-Young;Yoon, Sei-Chul
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.291-293
    • /
    • 2002
  • Accurate dose calculation in radiation treatment planning is most important for successful treatment. Since human body is composed of various materials and not an ideal shape, it is not easy to calculate the accurate effective dose in the patients. Many methods have been proposed to solve the inhomogeneity and surface contour problems. Monte Carlo simulations are regarded as the most accurate method, but it is not appropriate for routine planning because it takes so much time. Pencil beam kernel based convolution/superposition methods were also proposed to correct those effects. Nowadays, many commercial treatment planning systems, including Pinnacle and Helax-TMS, have adopted this algorithm as a dose calculation engine. The purpose of this study is to verify the accuracy of the dose calculated from pencil beam kernel based treatment planning system Helax-TMS comparing to Monte Carlo simulations and measurements especially in inhomogeneous region. Home-made inhomogeneous phantom, Helax-TMS ver. 6.0 and Monte Carlo code BEAMnrc and DOSXYZnrc were used in this study. Dose calculation results from TPS and Monte Carlo simulation were verified by measurements. In homogeneous media, the accuracy was acceptable but in inhomogeneous media, the errors were more significant.

  • PDF