• Title/Summary/Keyword: Beam Finite Element

Search Result 2,087, Processing Time 0.026 seconds

Finite Element Analysis Reinforced Concrete Slab Bridge Considering Elastic deformations of Reinforced Concrete T-type Piers (T형 교각의 탄성변형을 고려한 슬래브교의 유한요소 해석)

  • 이성철;윤동열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.100-110
    • /
    • 2000
  • In practical design of girder bridges or reinforced concrete slab bridges with T-type piers, it is usually assumed that vertical movements of superstructures are completely restrained at the locations of bearings(shoes) on a cap beam of the pier, The resulting vertical reactions are applied to the bearing for the calculation of bending moments and shear forces in the cap beam. However, in reality, the overhang parts of the cap beam will deform under the dead load of superstructures and the live load so that it may act as an elastic foundation. Due to the settlement of the elastic foundation, the actual distribution of the reactions at the bearings along the cap beam may be different from that obtained under the assumption that the vertical movements are fixed at the bearings. In the present study, investigated is the effects of elastic deformations of the T-type pier on the distribution of reactions at the bearings along the cap beam through 3-dimensional finite element analysis. Herein, for this purpose the whole structural system including the superstructure and piers as well is analyzed. It appears that the conventional practice which neglects the elastic deformations of the cap beam exhibits considerably different distributions of the reactions as compared with those obtained from the present finite element analysis. It is, therefore, recommended that in order to assess the reactions at bearings correctly the whole structural system be analyzed using 3-dimensional finite element analysis.

  • PDF

A Study on the Mixed Finite Element Models of Nonlinear Beam Bending Based on the Unconventional Residual Minimizing Method (비전통적 오차 최소화 방식에 기초한 비선형 빔의 휨에 대한 혼합형 유한요소해석 모델 연구)

  • Kim, Woo-Ram;Choi, Youn-Dae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.785-795
    • /
    • 2009
  • In this paper, new type of finite element models for the analysis of nonlinear beam bending are developed by using unconventional residual minimizing method to increase accuracy of finite element solutions and overcome some of computational drawbacks. Developing procedures of the new models are presented along with the comparison of the numerical results of existing beam bending models.

Assessment of nonlinear stability of geometrically imperfect nanoparticle-reinforced beam based on numerical method

  • Zheng, Yuxin;Jin, Hongwei;Jiang, Congying
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.113-120
    • /
    • 2022
  • In this paper, a finite element (FE) simulation has been developed in order to examine the nonlinear stability of reinforced sandwich beams with graphene oxide powders (GOPs). In this regard, the nonlinear stability curves have been obtained asuming that the beam is under compressive loads leading to its buckling. The beam is considered to be a three-layered sandwich beam with metal core and GOP reinforced face sheets and it is rested on elastic substrate. Moreover, a higher-order refined beam theory has been considered to formulate the sandwich beam by employing the geometrically perfect and imperfect beam configurations. In the solving procedure, the utalized finite element simulation contains a novel beam element in which shear deformation has been included. The calculated stability curves of GOP-reinforced sandwich beams are shown to be dependent on different parameters such as GOP amount, face sheet thickness, geometrical imperfection and also center deflection.

The construction of second generation wavelet-based multivariable finite elements for multiscale analysis of beam problems

  • Wang, Youming;Wu, Qing;Wang, Wenqing
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.679-695
    • /
    • 2014
  • A design method of second generation wavelet (SGW)-based multivariable finite elements is proposed for static and vibration beam analysis. An important property of SGWs is that they can be custom designed by selecting appropriate lifting coefficients depending on the application. The SGW-based multivariable finite element equations of static and vibration analysis of beam problems with two and three kinds of variables are derived based on the generalized variational principles. Compared to classical finite element method (FEM), the second generation wavelet-based multivariable finite element method (SGW-MFEM) combines the advantages of high approximation performance of the SGW method and independent solution of field functions of the MFEM. A multiscale algorithm for SGW-MFEM is presented to solve structural engineering problems. Numerical examples demonstrate the proposed method is a flexible and accurate method in static and vibration beam analysis.

Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams

  • Al-Maliki, Ammar F.H.;Ahmed, Ridha A.;Moustafa, Nader M.;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.177-193
    • /
    • 2020
  • In the present research, dynamic analysis of functionally graded (FG) graphene-reinforced beams under thermal loading has been carried out based on finite element approach. The presented formulation is based on a higher order refined beam element accounting for shear deformations. The graphene-reinforced beam is exposed to transverse periodic mechanical loading. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. Convergences and validation studies of derived results from finite element approach are also presented. This research shows that the resonance behavior of a nanocomposite beam can be controlled by the GPL content and dispersions. Therefore, it is showed that the dynamical deflections are notably influenced by GPL weight fractions, types of GPL distributions, temperature changes, elastic foundation and harmonic load excitation frequency.

Nonlinear finite element analysis of torsional R/C hybrid deep T-beam with opening

  • Lisantono, Ade
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.399-410
    • /
    • 2013
  • A nonlinear finite element analysis of R/C hybrid deep T-beam with web opening subjected to pure torsion is presented. Hexahedral 8-nodes and space truss element were used for modeling concrete and reinforcement. The reinforcement was assumed perfectly bonded to the corresponding nodes of the concrete element. The constitutive relations for concrete and reinforcement are based on the modified field theory and elastic perfectly plastic. The smear crack approach was adopted for modeling the crack. The torque-twist angle relationship curve based on the finite element analysis was compared to the experimental results. The comparison shows that the curve of torque-twist angle predicted by the nonlinear finite element analysis is linear before cracking and close to the experimental result. After cracking, the curve becomes nonlinear and stiffer compared to the experimental result.

EVALUATION OF THE FINITE ELEMENT MODELING OF A SPOT WELDED REGION FOR CRASH ANALYSIS

  • Song, J.H.;Huh, H.;Kim, H.G.;Park, S.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.329-336
    • /
    • 2006
  • The resistance spot-welded region in most current finite element crash models is characterized as a rigid beam at the location of the welded spot. The region is modeled to fail with a failure criterion which is a function of the axial and shear load at the rigid beam. The calculation of the load acting on the rigid beam is important to evaluate the failure of the spot-weld. In this paper, numerical simulation is carried out to evaluate the calculation of the load at the rigid beam. At first, the load on the spot-welded region is calculated with the precise finite element model considering the residual stress due to the thermal history during the spot welding procedure. And then, the load is compared with the one obtained from the model used in the crash analysis with respect to the element size, the element shape and the number of imposed constraints. Analysis results demonstrate that the load acting on the spot-welded element is correctly calculated by the change of the element shape around the welded region and the location of welded constrains. The results provide a guideline for an accurate finite element modeling of the spot-welded region in the crash analysis of vehicles.

A Study on the Numerical Analysis of Welding Heat Distribution of Preflex Beam (유한요소법에 의한 PREFLEX BEAM의 용접열분포 특성에 관한 연구)

  • 방한서;주성민;김하식
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.52-57
    • /
    • 2004
  • Preflex beam is a method of construction designed to hold the pre-compressive stresses over the concrete pier by the preflexion load. During the fabrication of the girder, welding causes residual stresses. The welding residual stresses must be relieved in order to generate the accurate compressive pre-stresses. In this study, to determine the thermal distribution characteristics on the girder by welding, both three-dimensional finite element analysis and two-dimensional finite element analysis, in a quasi-steady state, is carried out. After comparing each result between the three-dimensional analysis and the two-dimensional analysis, finite element analysis is carried out against the actual girder, and the welding thermal distribution characteristic over the preflex beam is analyzed. It is possible to provide the input data for the analysis of the welding residual stresses.

Geometry-dependent MITC method for a 2-node iso-beam element

  • Lee, Phill-Seung;Noh, Hyuk-Chun;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.203-221
    • /
    • 2008
  • In this paper, we present an idea of the geometry-dependent MITC method. The simple concept is exemplified to improve a 2-node iso-beam (isoparametric beam) finite element of varying section. We first study the behavior of a standard 2-node iso-beam finite element of prismatic section, which has been widely used with reduced integration (or the equivalent MITC method) in order to avoid shear locking. Based on analytical studies on cantilever beams of varying section, we propose the axial strain correction (ASC) scheme and the geometry-dependent tying (GDT) scheme for the 2-node iso-beam element. We numerically analyze varying section beam problems and present the improved performance by using both ASC and GDT schemes.

Detection of a Crack in Beams by Eigen Value Analysis (고유치 해석을 이용한 보의 크랙 탐색)

  • Lee, Hee-Su;Lee, Ki-Hoon;Cho, Jae-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.195-202
    • /
    • 2016
  • In this paper, crack detection method using eigen value analysis is presented. Three methods are used: theoretical analysis, finite element method with the cracked beam elements and finite element method with three dimensional continuum elements. Finite element formulation of the cracked beam element is introduced. Additional term about stress intensity factor based on fracture mechanics theory is added to flexibility matrix of original beam to model the crack. As using calculated stiffness matrix of cracked beam element and mass matrix, natural frequencies are calculated by eigen value analysis. In the case of using continuum elements, the natural frequencies could be calculated by using EDISON CASAD solver. Several cases of crack are simulated to obtain natural frequencies corresponding the crack. The surface of natural frequency is plotted as changing with crack location and depth. Inverse analysis method is used to find crack location and depth from the natural frequencies of experimental data, which are referred by another papers. Predicted results are similar with the true crack location and depth.

  • PDF