• 제목/요약/키워드: Beam Factor

검색결과 1,007건 처리시간 0.021초

비대칭 H형강 합성보의 단면형상변화에 따른 온도특성 및 화재거동에 관한 실험적 연구 (An Experimental Study on the Fire Resistance behaviour of Asymmetric Slimfloor Beam According to Cross Section Shape Variation)

  • 김형준;김흥열;이재승;권기혁;여인환
    • 한국화재소방학회논문지
    • /
    • 제26권1호
    • /
    • pp.23-30
    • /
    • 2012
  • 비대칭 H형강이 콘크리트에 매립되어 화재에 노출되는 일반 합성보에 비하여 내화성능이 높은 슬림플로어 공법에 대한 화재거동특성을 분석하고, 이를 기반으로 내화성능을 향상시킬 수 있는 최적 단면형상 조건을 도출하고자 연구를 수행하였다. 단면형상은 휨 성능을 증진시킬 수 있는 웨브 보강과 화재에 직접 노출되는 하부플랜지의 보강 방안에 대하여 화재실험을 진행하였으며, 무 보강조건과 형상변화시에 발생하는 합성플로어의 처짐을 비교 분석하여 효과적인 단면형상 설계조건을 도출하고자 하였다. 실험결과 웨브 보강방안에 비해 하부플랜지 보강시 내화성능 향상효율이 더 높은 것으로 나타났으며, 이는 화재에 직접적으로 노출되는 하부플랜지 부분에 보강을 하는 것이 급격한 온도상승으로 인한 강도저하로 인해 발생하는 변형을 보다 효율적으로 제어하기 때문으로 판단된다.

센서에 측정에러가 있는 볼-빔 시스템의 출력 궤환 제어기 (An Output Feedback Controller for a Ball and Beam System under Measurement Noise of Feedback Sensor)

  • 김현도;최호림
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.955-959
    • /
    • 2011
  • In this paper, we assume that an output sensor of a ball and beam system is coupled with AC measurement noise. We propose an output feedback controller for a ball and beam system under measurement noise of feedback sensor. Measurement noise makes feedback signals distorted, and results in performance degradation or even system failure. Therefore, we need to design a robust controller to accommodate the possible measurement noise in the feedback information. Our controller is equipped with a gain-scaling factor to minimize the effect of measurement noise in output feedback information. We give an analysis of the controlled system and illustrate the improved control performance via simulation and experiment for a ball and beam system.

Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns

  • Han, Lin-Hai;Zhao, Xiao-Ling;Tao, Zhong
    • Steel and Composite Structures
    • /
    • 제1권1호
    • /
    • pp.51-74
    • /
    • 2001
  • A series of tests on concrete-filled SHS (Square Hollow Section) stub columns (twenty), columns (eight) and beam-columns (twenty one) were carried out. The main parameters varied in the tests are (1) Confinement factor (${\xi}$) from 1.08 to 5.64, (2) concrete compression strength from 10.7MPa to 36.6MPa, (3) tube width to thickness ratio from 20.5 to 36.5. (4) load eccentricity (e) from 15 mm to 80 mm and (5) column slenderness (${\lambda}$) from 45 to 75. A mechanics model is developed in this paper for concrete-filled SHS stub columns, columns and beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and filled concrete. The predicted load versus axial strain relationship is in good agreement with stub column test results. Simplified models are derived for section capacities and modulus in different stages of the composite sections. The predicted beam-column strength is compared with that of 331 beam-column tests with a wide range of parameters. A good agreement is obtained. The predicted load versus midspan deflection relationship for beam-columns is in good agreement with test results. A simplified model is developed for calculating the member capacity of concrete-filled SHS columns. Comparisons are made with predicted columns strengths using the existing codes such as LRFD (AISC 1994), AIJ (1997), and EC4 (1996). Simplified interaction curves are derived for concrete-filled beam-columns.

유체력을 고려한 보-유추 선체진동 해석 (Beam-Like Ship Vibration Analysis in Consideration of Fluid)

  • Son, Choong-Yul
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.206-213
    • /
    • 1999
  • 선박의 보-유추 진동해석에 있어 2차원 부가수질량의 3차원 효과를 고려하기 위해서 3차원 수정계수(J-factor)를 계산해야 하는데 광폭선의 경우에는 J-factor의 계산이 부정확하고 번거롭다. 이 논문에서는 이를 개선하기 위해 새로운 선박의 보-유추 접수진동해석 방법을 소개하였다. 이 방법은 선박에 접수된 유체에 대해 BEM 기법을 이용하여 3차원 유체력을 직접 계산하고 이를 일정 간격으로 나눈 각 스트립에 집중질량으로 평가한 후에 선체의 보모델과 결합하여 보-유추 진동해석을 수행하는 방법이다. 오픈탑 컨테이너선의 모델에 대해 기존의 보-유추 진동해석방법과 이 논문에서 제시한 새로운 진동해석방법을 이용하여 진동해석을 수행하고 가진 실험에 의한 진동계측결과와 상호 비교함으로써 새로운 방법의 유용성을 검증하였다.

  • PDF

Deflection ductility of RC beams under mid-span load

  • Bouzid, Haytham;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.585-594
    • /
    • 2021
  • Ductility is very important parameter in seismic design of RC members such as beams where it allows RC beams to dissipate the seismic energy. In this field, the curvature ductility has taken a large part of interest compared to the deflection ductility. For this reason, the present paper aims to propose a general formula for predicting the deflection ductility factor of RC beams under mid-span load. Firstly, the moment area theorem is used to develop a model in order to calculate the yield and the ultimate deflections; then this model is validated by using some results extracted from previous researches. Secondly, a general formula of deflection ductility factor is written based on the developed deflection expressions. The new formula is depended on curvature ductility factor, beam length, and plastic hinge length. To facilitate the use of this formula, a parametric study on the curvature ductility factor is conducted in order to write it in simple manner without the need for curvature calculations. Therefore, the deflection ductility factor can be directly calculated based on beam length, plastic hinge length, concrete strength, reinforcement ratios, and yield strength of steel reinforcement. Finally, the new formula of deflection ductility factor is compared with the model previously developed based on the moment area theorem. The results show the good performance of the new formula.

호흡동조 양성자치료의 Quality Verification (Quality Verification for Respiratory Gated Proton Therapy)

  • 김은숙;장요종;박지연;강동윤;염두석
    • 대한방사선치료학회지
    • /
    • 제25권2호
    • /
    • pp.107-113
    • /
    • 2013
  • 목 적: 호흡동조 시스템을 이용한 양성자치료 시 생성되는 양성자빔을 측정하고 분석함으로써 호흡동조 양성자치료의 정확성을 검증하고자 한다. 대상 및 방법: 호흡동조 양성자치료를 실시한 환자 세 명의 치료계획을 이용하여 양성자 치료 시스템에서 양성자빔을 생성했다. 이때 자체 제작한 구동 팬톰을 사용하여 호흡동조 시스템을 적용해 분할 조사되는 양성자빔을 재현하였다. 양성자빔의 중요특성인 Range, Spread-Out Bragg Peak (SOBP), Output factor를 각 5회씩 측정하였으며 호흡동조 시스템을 적용하지 않은 연속 양성자빔에서도 동일한 항목들을 측정했다. Range와 SOBP 측정에는 Multi-Layer Ionization Chamber, Output factor 측정에는 Scanditronix Wellhofer와 Farmer chamber를 사용했다. 결 과: 호흡동조 시스템을 적용한 경우 세 환자의 평균 Range는 7.226, 12.216, 19.918 $g/cm^2$, SOBP는 4.950, 6.496, 8.486 $g/cm^2$, Output factor는 0.985, 1.026, 1.138 cGy/MU였으며, 적용하지 않은 경우 평균 Range는 7.230, 12.220, 19.920 $g/cm^2$, SOBP는 4.940, 6.512, 8.490 $g/cm^2$, Output factor는 0.984, 1.027, 1.136 cGy/MU로 측정됐다. 평균 Range의 차는 -0.004, -0.004, -0.002 $g/cm^2$, SOBP는 0.010, -0.016, -0.004 $g/cm^2$, Output factor는 0.001, -0.001, 0.002 cGy/MU로 나타났다. 결 론: 호흡동조 양성자치료 시 분할 조사된 양성자빔과 연속 조사된 양성자빔의 Range, SOBP 및 Output factor 모두 차이가 미미했다. 따라서 본 연구를 통해 호흡동조 시 발생된 양성자빔의 선질을 검증하였고 이를 이용한 양성자치료의 정확성 또한 확인할 수 있었다.

  • PDF

Effects of Material Anisotropy on Ultrasonic Beam Propagation: Diffraction and Beam Skew

  • Jeong, Hyun-Jo;Schmerr, W.
    • 비파괴검사학회지
    • /
    • 제26권3호
    • /
    • pp.198-205
    • /
    • 2006
  • The necessity of nondestructively inspecting austenitic steels, fiber-reinforced composites, and other inherently anisotropic materials has stimulated considerable interest in developing beam models for anisotropic media. The properties of slowness surface playa key role in the beam models based on the paraxial approximation. In this paper, we apply a modular multi-Gaussian beam (MMGB) model to study the effects of material anisotropy on ultrasonic beam profile. It is shown that the anisotropic effects of beam skew and excess beam divergence enter into the MMGB model through parameters defining the slope and curvature of the slowness surface. The overall beam profile is found when the quasilongitudinal(qL) beam propagates in the symmetry plane of transversely isotropic austenitic steels. Simulation results are presented to illustrate the effects of these parameters on ultrasonic beam diffraction and beam skew. The MMGB calculations are also checked by comparing the anisotropy factor and beam skew angle with other analytical solutions.

Wave propagation of CNTRC beams resting on elastic foundation based on various higher-order beam theories

  • Yi-Wen Zhang;Hao-Xuan Ding;Gui-Lin She;Abdelouahed Tounsi
    • Geomechanics and Engineering
    • /
    • 제33권4호
    • /
    • pp.381-391
    • /
    • 2023
  • The aim of this work is to analyze and predict the wave propagation behavior of the carbon nanotube reinforced composites (CNTRC) beams within the framework of various higher order shear deformation beam theory. Using the Euler-Lagrange principle, the wave equations for CNTRC beams are derived, where the determining factor is to make the determinant equal to zero. Based on the eigenvalue method, the relationship between wave number and circular frequency is obtained. Furthermore, the phase and group velocities during wave propagation are obtained as a function of wave number, and the material properties of CNTRC beams are estimated by the mixture rule. In this paper, various higher order shear beam theory including Euler beam theory, Timoshenko beam theory and other beam theories are mainly adopted to analyze the wave propagation problem of the CNTRC beams, and by this way, we conduct a comparative analysis to verify the correctness of this paper. The mathematical model provided in this paper is verified numerically by comparing it with some existing results. We further investigate the effects of different enhancement modes of CNTs, volume fraction of CNTs, spring factor and other aspects on the wave propagation behaviors of the CNTRC beams.

확장된 SSD에 기인한 Electron beam의 Output 및 특성 변화에 관한 연구 (A Study on clinical Considerations caused by inevitably Extended SSD for Electron beam therapy)

  • 이정우;김정만
    • 대한방사선치료학회지
    • /
    • 제8권1호
    • /
    • pp.29-35
    • /
    • 1996
  • We are often faced with the clinical situations that is inevitably extended SSD for electron beam therapy due to anatomical restriction or applicator structure. But there are some difficulties in accurately predicting output and properties. In electron beam treatment , unlike photon beam the decrease in output for extended SSD does not follow inverse-square law accurately because of a loss of side scatter equilibrium, which is particularly significant for small cone size and low energies. The purpose of our study is to analyze the output in changing with the energy, cone size, air gap beyond the standard SSD and to compare inverse-square law factor derived from calculated effective SSD, mominal SSD with measured output factor. In addition, we have analyzed the change of PDD for several cones with different SSDs which range from 100cm to 120cm with 5cm step and with different energies(6MeV, 9MeV, 12MeV, 16MeV, 20MeV). In accordance with our study, an extended SSD produces a significant change in beam output, negligible change in depth dose which range from 100cm to 120cm SSDs. In order to deliver the more accurate dose to the neoplastic tissue, first of all we recommend inverse-square law using the table of effective SSDs with cone sizes and energies respectively or simply to create a table of extended SSD air gap correction factor. The second we need to have an insight into some change of dose distribution including PPD, penumbra caused by extended SSD for electron beam therapy.

  • PDF

강재의 단면형상에 따른 내화피복두께 산정 연구 (Study on the Determination of Fire Protection Thickness based on Section Factor)

  • 정청운;지남용;권인규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.139-142
    • /
    • 2003
  • Traditionally, the thickness of fire protection materials of structural elements such as beam and column have been decided by fire test using the predominant steel section of $H-300{\times}300{\times}10{\times}15$ for column and $H-400{\times}200{\times}8{\times}13$ for beam in Korea. But this way of determination of fire protection thickness yields very unduly results. Because the temperature-increment rate of structural steel elements depends mainly on magnitude of their cross-areas. In general, the thicker size of cross-areas for structural elements, the lower temperature shows up. It had already proved that the fire protection thickness only depends on the size of cross-areas and the fire protection method for three-fide or four-side exposed conditions in European countries, the United State of America and so on. To demonstrate there would be differences among various cross-areas for structural elements, we conducted several fire tests with full-scale specimens of beams and columns. For the determination of critical temperature for steel section when the fire resistant performance is needed to be decided, we conducted with a loaded fire test for beam and column, respectively. The small column in 1.0 meter length and beam in 1.5 meter length were used in order to deprive the rational fire protection thickness of structural elements such as beam and column, respectively. After test, we could obtain there were significant temperature lass between higher cross-areas and lower cross-areas. The critical temperature of steel as a criterion is used 538$^{\circ}C$ for column and 593$^{\circ}C$ for beam which is from ASTM E 119 because we don't make provisions as critical temperature by elements. We could consider that the best way of determination of fire protection thickness is using the following multi-regression equation which was deprived from several fire tests using the concept of section factor, FR(column) = 0.17 +5191.49t A/Hp + 40.77t, FR(beam) = 0.25 +6899.31t A/Hp + 32.60t(where, FR means fire resistant time, t means thickness, A means cross-area and Hp means heated parameter).

  • PDF