• 제목/요약/키워드: Beam Factor

검색결과 1,012건 처리시간 0.033초

Dose Calculation of Photon Beam with Wedge Filter for Radiation Therapy Planning System

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Lee, Hyoung-Koo;Choe, Bo-Young
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2003년도 제27회 추계학술대회
    • /
    • pp.41-41
    • /
    • 2003
  • Purpose: Even if the wedge filter is widely used for the radiation therapy to modify the photon beam intensity, the wedged photon beam dose calculation is not so easy. Radiation therapy planning systems (RTPS) have been used the empirical or semi-analytical methods such as attenuation method using wedge filter parameters or wedge filter factor obtained from measurement. However, these methods can cause serious error in penumbra region as well as in edge region. In this study, we propose the dose calculation algorithm for wedged field to minimize the error especially in the outer beam region. Materials and Method: Modified intensity by wedge filter was calculated using tissue-maximum ratio (TMR) and scatter-maximum ratio (SMR) of wedged field. Profiles of wedged and non-wedged direction was also used. The result of new dose calculation was compared with measurement and the result from attenuation method. Results: Proposed algorithm showed the good agreement with measurement in the high dose-gradient region as well as in the inner beam region. The error was decreased comparing to attenuation method. Conclusion: Although necessary beam data for the RTPS commissioning was increased, new algorithm would guarantee the improved dose calculation accuracy for wedged field. In future, this algorithm could be adopted in RTPS.

  • PDF

Analysis of behaviour of steel beams with web openings at elevated temperatures

  • Yin, Y.Z.;Wang, Y.C.
    • Steel and Composite Structures
    • /
    • 제6권1호
    • /
    • pp.15-31
    • /
    • 2006
  • Beams with web openings are an attractive system for multi-storey buildings where it is always desirable to have long spans. The openings in the web of steel beams enable building services to be integrated within the constructional depth of a floor, thus reducing the total floor depth. At the same time, the increased beam depth can give high bending moment capacity, thus allowing long spans. However, almost all of the research studies on web openings have been concentrated on beam behaviour at ambient temperature. In this paper, a preliminary numerical analysis using ABAQUS is conducted to develop a general understanding of the effect of the presence of web opening on the behaviour of steel beams at elevated temperatures. It is concluded that the presence of web openings will have substantial influence on the failure temperatures of axially unrestrained beams and the opening size at the critical position in the beam is the most important factor. For axially restrained beams, the effect of web openings on the beam's large deflection behaviour and catenary force is smaller and it is the maximum opening size that will affect the beam's response at very high temperatures. However, it is possible that catenary action develops in beams with web openings at temperatures much lower than the failure temperatures of the same beam without axial restraint that are often used as the basis of current design.

크랙을 가진 단순지지 보의 동특성에 미치는 이동질량의 영향 (Influence of Serial Moving Masses on Dynamic Behavior of Simply Supported Beam with Crack)

  • 윤한익;김영수;손인수
    • 한국소음진동공학회논문집
    • /
    • 제13권7호
    • /
    • pp.555-561
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported Euler-Bernoulli beams with the moving masses. The influences of the velocities of moving masses, the distance between the moving masses and a crack have been studied on the dynamic behavior of a simply supported beam system by numerical method. The Presence of crack results In large deflection of beam. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. Totally, as the velocity of the moving masses and the distance between the moving masses are increased, the mid-span deflection of simply supported beam with the crack is decreased.

Seismic performance of the concrete-encased CFST column to RC beam joints: Analytical study

  • Ma, Dan-Yang;Han, Lin-Hai;Zhao, Xiao-Ling;Yang, Wei-Biao
    • Steel and Composite Structures
    • /
    • 제36권5호
    • /
    • pp.533-551
    • /
    • 2020
  • A finite element analysis (FEA) model is established to investigate the concrete-encased concrete-filled steel tubular (CFST) column to reinforced concrete (RC) beam joints under cyclic loading. The feasibility of the FEA model is verified by a set of test results, consisting of the failure modes, the exposed view of connections, the crack distributions and development, and the hysteretic relationships. The full-range analysis is conducted to investigate the stress and strain development process in the composite joint by using this FEA model. The internal force distributions of different components, as well as the deformation distributions, are analyzed under different failure modes. The proposed connections are investigated under dimensional and material parameters, and the proper constructional details of the connections are recommended. Parameters of the beam-column joints, including material strength, confinement factor, reinforcement ratio, diameter of steel tube to sectional width ratio, beam to column linear bending stiffness ratio and beam shear span ratio are evaluated. Furthermore, the key parameters affecting the failure modes and the corresponding parameters ranges are proposed in this paper.

열확산도 측정을 위한 광열 신기루 기법 개발 (Development of Photothermal Mirage Technique for Measuring Thermal Diffusivity)

  • 최선락;이주철;김동식
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1220-1228
    • /
    • 2003
  • The mirage technique is proved to be powerful in measuring the thermal diffusivity of materials. In particular, its contactless nature makes it suitable for delicate samples and microscale structures. In this study, thermal-wave-coupling method is developed in a general form for both thermally thin and thick samples. In the suggested measuring scheme, the probe beam can be positioned close to the pump beam and the absolute position need not be measured. Therefore the new scheme provides a relatively simple yet effective way to determine the thermal diffusivity of thermally thick samples. Thermal diffusivities of bulk samples like Ni and Al were measured and the characteristics of mirage signal for a thin film were observed by using the mirage experimental setup. The apparent thermal diffusivity was measured by varying such parameters as probe beam height, size of pump beam, power of pump beam, and surface condition of sample. From the practical standpoint, it is shown that the size of the pump beam is the most important factor for accurate thermaldiffusivity measurement. Experiments using thin-film samples show that the thermal diffusivity of a substrate covered with thin film can be measured by photothermal mirage signals.

끝단 집중질량과 크랙을 가진 외팔보의 진동 해석 (Vibration Analysis of Cantilever Beams Having a Concentrated Tip Mass and a Crack)

  • 김경호;엄승만;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1360-1365
    • /
    • 2006
  • In this paper the vibration analysis of cantilever beams having a concentrated tip mass and an open crack are performed. The influences of a concentrated tip mass, the crack depth, and the crack position on the natural frequencies of the cracked cantilever beam are investigated by a numerical method. The cracked cantilever beam is modeled based on the Euler-Bernoulli beam theory. The flexibility due to crack is calculated using a fracture mechanics theory. The crack is assumed to be opened during the vibrations. The results obtained by the present method were compared with experimental results to verify the theory. As inspected, as the crack depth and the concentrated tip mass increase, the natural frequencies of the beam decrease. In general, the natural frequencies of the cantilever beam are more sensitive to the depth of the crack than the position of the crack.

  • PDF

크랙을 가진 단순지지 보의 동특성에 미치는 이동질량의 영향 (Influence of Serial Moving Masses on Dynamic Behavior of a Simply Support Beam with Crack)

  • 손인수;조정래;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1085-1090
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported Euler-Bernoulli beams with the moving masses. The influences of the velocities of moving masses, the distance between the moving masses and a crack have been studied on the dynamic behavior or a simply supported beam system by numerical method. no presence or crack results in large deflection of beam. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. Totally, as the velocity of the moving masses and the distance between the moving masses are increased, the mid-span deflection of simply supported beam with the crack is decreased.

  • PDF

Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads

  • Hamed, Mostafa A.;Mohamed, Salwa A;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.75-89
    • /
    • 2020
  • The current paper illustrates the effect of in-plane varying compressive force on critical buckling loads and buckling modes of sandwich composite laminated beam rested on elastic foundation. To generalize a proposed model, unified higher order shear deformation beam theories are exploited through analysis; those satisfy the parabolic variation of shear across the thickness. Therefore, there is no need for shear correction factor. Winkler and Pasternak elastic foundations are presented to consider the effect of any elastic medium surrounding beam structure. The Hamilton's principle is proposed to derive the equilibrium equations of unified sandwich composite laminated beams. Differential quadrature numerical method (DQNM) is used to discretize the differential equilibrium equations in spatial direction. After that, eigenvalue problem is solved to obtain the buckling loads and associated mode shapes. The proposed model is validated with previous published works and good matching is observed. The numerical results are carried out to show effects of axial load functions, lamination thicknesses, orthotropy and elastic foundation constants on the buckling loads and mode shapes of sandwich composite beam. This model is important in designing of aircrafts and ships when non-uniform compressive load and shear loading is dominated.

Optimum design of steel floor system: effect of floor division number, deck thickness and castellated beams

  • Kaveh, A.;Ghafari, M.H.
    • Structural Engineering and Mechanics
    • /
    • 제59권5호
    • /
    • pp.933-950
    • /
    • 2016
  • Decks, interior beams, edge beams and girders are the parts of a steel floor system. If the deck is optimized without considering beam optimization, finding best result is simple. However, a deck with higher cost may increase the composite action of the beams and decrease the beam cost reducing the total cost. Also different number of floor divisions can improve the total floor cost. Increasing beam capacity by using castellated beams is other efficient method to save the costs. In this study, floor optimization is performed and these three issues are discussed. Floor division number and deck sections are some of the variables. Also for each beam, profile section of the beam, beam cutting depth, cutting angle, spacing between holes and number of filled holes at the ends of castellated beams are other variables. Constraints include the application of stress, stability, deflection and vibration limitations according to the load and resistance factor (LRFD) design. Objective function is the total cost of the floor consisting of the steel profile cost, cutting and welding cost, concrete cost, steel deck cost, shear stud cost and construction costs. Optimization is performed by enhanced colliding body optimization (ECBO), Results show that using castellated beams, selecting a deck with higher price and considering different number of floor divisions can decrease the total cost of the floor.

Cyclic loading test of abnormal joints in SRC frame-bent main building structure

  • Wang, Bo;Cao, Guorong;Yang, Ke;Dai, Huijuan;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.417-430
    • /
    • 2021
  • Due to functional requirements, SRC column-RC beam abnormal joints with characteristics of strong beam weak column, variable column section, unequal beam height and staggered height exist in the Steel reinforced concrete (SRC) frame-bent main building structure of thermal power plant (TPP). This paper presents the experimental results of these abnormal joints through cyclic loading tests on five specimens with scaling factor of 1/5. The staggered height and whether adding H-shaped steel in beam or not were changing parameters of specimens. The failure patterns, bearing capacity, energy dissipation and ductile performance were analyzed. In addition, the stress mechanism of the abnormal joint was discussed based on the diagonal strut model. The research results showed that the abnormal exterior joints occurred shear failure and column end hinge flexural failure; reducing beam height through adding H-shaped steel in the beam of abnormal exterior joint could improve the crack resistance and ductility; the abnormal interior joints with different staggered heights occurred column ends flexural failure; the joint with larger staggered height had the higher bearing capacity and stiffness, but lower ductility. The concrete compression strut mechanism is still applicable to the abnormal joints in TPP, but it is affected by the abnormal characteristics.