• Title/Summary/Keyword: Beam Design

Search Result 3,540, Processing Time 0.035 seconds

Seismic Tests of Steel Beam-to-column Moment Connections with Inclined End-plate Beam Splice (경사단부강판 보 이음을 갖는 강재 보-기둥 모멘트접합부의 내진실험)

  • Lim, Jong Jin;Kim, Dong Gwan;Lee, Sang Hyun;Park, Choul Soo;Lee, Chang Nam;Eom, Tae Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.181-192
    • /
    • 2017
  • A beam splice method using inclined end-plates and high-strength tension bolts was developed. The end-plates welded to a bracket and a spliced beam are connected each other by using the tension bolts. In the present study, six exterior beam-to-column moment connections were tested under cyclic loading. Test parameters were the end-plate details and bolt arrangements. All specimens were designed so that moment resistances of the end-plates and bolts were greater than the required moment at the beam splice, in accordance with the design methods of AISC Design Guide 4. Test results showed that in the beam splices with the extended end-plates, the beam moment successfully transferred to the bracket, without any defeats such as excessive prying action of the end plates and brittle failure at the end plate-to-beam flange weld joints. However, the deformation capacities of the overall beam-to-column connections were limited due to the brittle failure of the beam-to-column flange weld joints. From the test results, recommendations for seismic design and detailing of the beam-to-column moment connection with inclined end-plate beam splice were given.

An Epithermal Neutron Beam Design for BNCT Using $^2H(d,n)^3He$ Reaction

  • Han, Chi-Young;Kim, Jong-Kyung;Chung, Kyu-Sun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.512-521
    • /
    • 1999
  • A feasibility study was performed to design an epithermal neutron beam for BNCT using the neutron of 2.45 MeV on the average produced from $^2H(d,n)^3$He reaction induced by plasma focus in the z-pinch instead of the conventional accelerator-based $^3H(d, n)^4$He neutron generator. Flux and spectrum were analyzed to use these neutrons as the neutron source for BNCT. Neutronic characteristics of several candidate materials in this neutron source were investigated Using MCNP Code, and $^7LiF$ ; 40%Al + 60%$AIF_3$, and Pb Were determined as moderator, filter, and reflector in an epithermal neutron beam design for BNCT, respectively. The skin-skull-brain ellipsoidal phantom, which consists of homogeneous regions of skin-, bone-, or brain-equivalent material, was used in order to assess the dosimetric effect in brain. An epithermal neutron beam design for BNCT was proposed by the repeated work with MCNP runs, and the dosimetric properties (AD, AR, ADDR, and Dose Components) calculated within the phantom showed that the neutron beam designed in this work is effective in tumor therapy. If the neutron source flux is high enough using the z-pinch plasma, BNCT using the neutron source produced from $^2H(d,n)^3$He reaction will be very feasible.

  • PDF

Comparative performance of seismically deficient exterior beam-column sub-assemblages of different design evolutions: A closer perspective

  • Kanchana Devi, A.;Ramanjaneyulu, K.
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.177-191
    • /
    • 2017
  • In the present study, exterior beam column sub-assemblages are designed in accordance with the codal stipulations prevailed at different times prior to the introduction of modern seismic provisions, viz., i) Gravity load designed with straight bar anchorage (SP1), ii) Gravity load designed with compression anchorage (SP1-D), iii) designed for seismic load but not detailed for ductility (SP2), and iv) designed for seismic load and detailed for ductility (SP3). Comparative seismic performance of these exterior beam-column sub-assemblages are evaluated through experimental investigations carried out under repeated reverse cyclic loading. Seismic performance parameters like load-displacement hysteresis behavior, energy dissipation, strength and stiffness degradation, and joint shear deformation of the specimens are evaluated. It is found from the experimental studies that with the evolution of the design methods, from gravity load designed to non-ductile and then to ductile detailed specimens, a marked improvement in damage resilience is observed. The gravity load designed specimens SP1 and SP1-D respectively dissipated only one-tenth and one-sixth of the energy dissipated by SP3. The specimen SP3 showcased tremendous improvement in the energy dissipation capacity of nearly 2.56 times that of SP2. Irrespective of the level of design and detailing, energy dissipation is finally manifested through the damage in the joint region. The present study underlines the seismic deficiency of beam-column sub-assemblages of different design evolutions and highlights the need for their strengthening/retrofit to make them fit for seismic event.

Experimental investigation and design method of the general anchorage zone in the ring beam of prestressed concrete containment vessels

  • Chang Wu;Tao Chen;Yanli Su;Tianyun Lan;Shaoping Meng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.485-497
    • /
    • 2024
  • Ring beam is the main anchorage zone of the tendons in the nuclear power prestressed concrete containment vessel (PCCV). Its safety is crucial and has a great influence on the overall performance of PCCV. In this paper, two half-scale ring beams were tested to investigate the mechanical performance of the anchorage zone in the PCCV under multidirectional pressure. The effect of working condition with different tension sequences was investigated. Additionally, a half axisymmetric plane model of the containment was established by the finite element simulation to further predict the experimental responses and propose the local reinforcement design in the anchorage zone of the ring beam. The results showed that the ultimate load of the specimens under both working conditions was greater than the nominal ultimate tensile force. The original reinforcement design could meet the bearing capacity requirements, but there was still room for optimization. The ring beam was generally under pressure in the anchorage area, while the splitting force appeared in the under-anchor area, and the spalling force appeared in the corner area of the tooth block, which could be targeted for local strengthening design.

A Study on the Ultimate Shear Strength Estimation of the Interior Joints of Steel Beam and Reinforced Concrete Column (철골보와 철근콘크리트기둥으로 구성된 내부 접합부의 극한전단강도 산정에 관한 연구)

  • Mun, Sang-Hun;An, Jae-Hyeok;Park, Cheon-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.57-62
    • /
    • 2006
  • Recent trends in the construction of building frame feature the use of composite steel concrete members. One of such system, RCS(Reinforced Concrete column and Steel beam) system, is known as a type of system to maximize the structural and economic benefits in the most efficient manner. This paper is focusing on an study of ultimate shear strength estimation of the interior beam-column joints of RCS system, with reinforced concrete column and steel beam. Current design methods as well as the majority of the previous researches for ultimate shear strength of the interior beam-column joint of RCS system are not easy to apply actual manner. There is a need to propose the rational macro models based on analytical approach. In this study, design method variables for interior beam-column joints of RCS system is studied assuming shear resistance of steel web panel, diagonal concrete strut mechanism and truss mechanism. Finally, calculated results based on the proposed design model are compared with test data.

Research on rotation capacity of the new precast concrete assemble beam-column joints

  • Han, Chun;Li, Qingning;Wang, Xin;Jiang, Weishan;Li, Wei
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.613-625
    • /
    • 2016
  • The joints of the new prefabricated concrete assemble beam-column joints are put together by the hybrid joints of inserting steel under post-tensioned and non-prestressed force and both beams and columns adopt prefabricated components. The low cyclic loading test has been performed on seven test specimens of beam-column joints. Based on the experimental result, the rotation capacity of the joints is studied and the $M-{\theta}$ relation curve is obtained. According to Eurocode 3: Design of steel structures and based on the initial rotational stiffness, the joints are divided into three types; by equivalent bending-resistant stiffness to the precast beam, the equivalent modulus of elasticity $E_e$ is elicited with the superposition method; the beam length is figured out that satisfies the rigid joints and after meeting the requirements of application and safety, the new prefabricated concrete assemble beam-column joints can be regarded as the rigid joints; the design formula adopted by the standard of concrete joint classification is theoretically derived, thereby providing a theoretical basis for the new prefabricated concrete structure.

On the static stability of nonlocal nanobeams using higher-order beam theories

  • Eltaher, M.A.;Khater, M.E.;Park, S.;Abdel-Rahman, E.;Yavuz, M.
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.51-64
    • /
    • 2016
  • This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.

Axiomatic Design of a Beam Adjuster for Laser Marker (레이저 마커용 빔 정렬장치의 공리적 설계)

  • Sin, Gwang-Seop;Lee, Jeong-Uk;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1727-1735
    • /
    • 2002
  • The usage of beam scanning type laser marker is rapidly increasing in the field of semiconductor equipment. A device called ″beam adjuster″ is employed to adjust the visible diode laser, which points the marking position for various setting. The device is very sensitive to manufacturing tolerance and assembly condition. Axiomatic approach has been applied to the design of the device. An existing design is analyzed based on the Independence Axiom. The existing design is found to violate the axiom. Two new designs are proposed to satisfy the Independence Axiom. The Information Axiom is utilized to evaluate the designs. A design is selected to have the minimum information content. The significance of this research is that a full cycle of axiomatic design is applied to a real engineering product.

A Study on the Design Automation of R/C Beam by the Finite Element Method and Truss Model Approach (유한요소법과 트러스모델에 의한 철근콘크리트 보 부재의 설계자동화에 관한 연구)

  • 엄대호;이정재;윤성수;김한중
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.119-123
    • /
    • 1998
  • New design automation method of R/C beam based on the finite element method and the nonlinear truss model approach has been presented. The proposed method can substitute inaccurate existing method, which has limitation in its application, provide accurate and efficient design results for any type of R/C beam.

  • PDF

Multi-beam Antenna Analysis

  • Lee, Jeom-Hun;Oh, Seung-Hyeub
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.71-76
    • /
    • 2004
  • This paper describes the antenna analysis of the multi-beam for communicationsatellite. The design core parameters of the antenna system are optimal antennadiameter, feed horn type and hom size, F/D, and the coordinate of offset horns. Thepaper deals with the method to determine design core parameters of optimal antennadiameter, feed horn type and horn size. F/D, and the coordinate of offset horns, andthe performances of design result.