• Title/Summary/Keyword: Beam Attenuation

Search Result 164, Processing Time 0.022 seconds

Evaluation of canalis basilaris medianus using cone-beam computed tomography

  • Syed, Ali Z.;Zahedpasha, Samir;Rathore, Sonali A.;Mupparapu, Mel
    • Imaging Science in Dentistry
    • /
    • v.46 no.2
    • /
    • pp.141-144
    • /
    • 2016
  • The aim of this report is to present two cases of canalis basilaris medianus as identified on cone-beam computed tomography (CBCT) in the base of the skull. The CBCT data sets were sent for radiographic consultation. In both cases, multi-planar views revealed an osseous defect in the base of the skull in the clivus region, the sagittal view showed a unilateral, well-defined, non-corticated, track-like low-attenuation osseous defect in the clivus. The appearance of the defect was highly reminiscent of a fracture of the clivus. The borders of osseous defect were smooth, and no other radiographic signs suggestive of osteolytic destructive processes were noted. Based on the overall radiographic examination, a radiographic impression of canalis basilaris medianus was made. Canalis basilaris medianus is a rare anatomical variant and is generally observed on the clivus. Due to its potential association with meningitis, it should be recognized and reported to avoid potential complications.

Incidental occurrence of an unusually large mastoid foramen on cone-beam computed tomography and review of the literature

  • Syed, Ali Z.;Sin, Cleo;Rios, Raquel;Mupparapu, Mel
    • Imaging Science in Dentistry
    • /
    • v.46 no.1
    • /
    • pp.39-45
    • /
    • 2016
  • The incidental finding of an enlarged mastoid foramen on the right posterior mastoid region of temporal bone is reported, together with a discussion of its clinical significance. A 67-year-old female underwent the pre-implant assessment of a maxillary left edentulous region. A cone-beam computed tomographic (CBCT) image was acquired and referred for consultation. Axial CBCT slices revealed a unilateral, well-defined, noncorticated, low-attenuation, transosseous defect posterior to the mastoid air cells in the right temporal bone. The borders of the osseous defect were smooth and continuous. No other radiographic signs suggestive of erosion or sclerosis were noted in the vicinity. The density within the defect was homogenous and consistent with a foramen and/or soft tissue. The patient's history and physical examination revealed no significant medical issues, and she was referred to a neuroradiologist for a second opinion. The diagnosis of an enlarged mastoid foramen was made and the patient was reassured.

The Study of Usefulness of Metal Artifact Reduction Algorithm and Artifacts Caused by Metallic Hip Prosthesis on PET/CT (PET/CT에서의 고관절 삽입물에 의한 인공물과 Metal Artifact Reduction Algorithm의 유용성에 대한 고찰)

  • Park, Min Soo;Ham, Jun Cheol;Cho, Yong In;Kang, Chun Goo;Park, Hoon-Hee;Lim, Han Sang;Lee, Chang Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.35-43
    • /
    • 2012
  • Purpose : PET/CT performed CT-based attenuation correction generates the beam hardening artifact by metallic implant. The attenuation correction causes over or underestimate of the area adjacent to metallic hip prosthetic material and change of $^{18}F$-FDG uptake. Also, the image quality and the diagnosability on genitourinary disease are reduced. Therefore, this study will evaluate the usefulness of MAR (Metal Artifact Reduction) algorithm method to improve the image quality on PET/CT. Materials and Methods : PET/CT was performed by fixing hip prosthesis in SPECT/PET phantom. In PET images with and Without MAR algorithm, the Bright streak, Dark streak, Metal region and Background area that appeared on CT were confirmed, and the change of each SUV (standardized uptake value) was analyzed. Also, in 15 patients who underwent total hip arthroplasty, each MAR algorithm and Without MAR algorithm and non attenuation correction was evaluated. Results : In PET image Without MAR algorithm, SUV of Bright streak region was $0.98{\pm}0.48$ g/ml; Dark streak region was $0.88{\pm}0.02$ g/ml; Metal region was $0.24{\pm}0.16$ g/ml, Background area was $0.91{\pm}0.18$ g/ml. In SUV of PET image with MAR algorithm, Bright streak region was $0.88{\pm}0.49$ g/ml, Dark streak region was $0.63{\pm}0.21$ g/ml, Metal region was $0.06{\pm}0.07$ g/ml, Background was $0.90{\pm}0.02$ g/ml. SUV generally decreased when applying MAR algorithm. In PET image Without MAR algorithm, SUVs of Bright region were higher than those measured in the Background, and it was false positive uptake. But, in PET image with MAR algorithm, SUVs of Bright region were similar to the Background, and false positive uptake disappeared. Conclusion : MAR algorithm could reduce an increase of $^{18}F$-FDG uptake due to attenuation correction in the hip surrounding tissue. However, decrease of SUV in Dark streak region should be considered in the future. Therefore, this study propose that the diagnostic accuracy can be improved in genitourinary diseases adjacent to metallic hip prosthesis, if provided PET images with and Without MAR algorithm, and non attenuation correction images at the same time.

  • PDF

Use of Beam Transmissometer as an Indirect Measure of Suspended Sediment Concentration in the Estuarine Environment: Application and Problems (강하구에서의 부유물질농도 결정을 위한 광전도측정기의 이용 및 문제점)

  • KIM Seok-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.771-781
    • /
    • 1994
  • Monthly measurements made at 15 stations along the axis of the upper Neuse River estuary show a highly variable degree of correlation between concentration of suspended particulate material (SPM) and attenuation coefficient (c) of light as measured by transmissometer. Coefficients of determination along transect lines ranged from $0.12{\sim}0.93$ and calibration slopes ranged from $0.50{\sim}5.63$. When examined on a station-by-station basis, coefficients of determination ranged from $0.21{\sim}0.96$ and calibration slopes ranged from $1.04{\sim}4.94$. Surface calibrations made at individual stations over the full 13-month period were the most consistent of all observations and were considerably better than calibrations made using all of the stations on a given day. Organic content, which can dominate the suspended sediment load during some months, does not appear to explain the variations in reliability of the calibrations. However, an abundance of large aggregates with time-varying size and shape distributions may be partly responsible for variations in optical properties of the sediments, and thus may confound the relationship between SPM and c in the Neuse River estuary Time-varying calibrations to account for non-negligible changes in optical properties may not suffice in complex estuarine environments where the in situ particle dynamics are poorly understood. However, the best use of Beam Transmissometer will continue to be for applications such as detecting water-column events or for use in situations where wide error bars in establishing SPM concentrations are acceptable.

  • PDF

Vibration Attenuation in Helicopters using an Active Trailing-edge Flap Blade

  • Natarajan, Balakumaran;Eun, WonJong;Shin, SangJoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.347-352
    • /
    • 2013
  • Seoul National University Flap (SNUF) blade is a small-scaled rotor blade incorporating a small trailing-edge flap control surface driven by piezoelectric actuators at higher harmonics for vibration attenuation. Initially, the blade was designed using two-dimensional cross-section analysis and a geometrically exact one-dimensional beam analysis, and material configuration was finalized. Flap deflection angle of ${\pm}45^{\circ}$ was established as the criterion for better vibration reduction performance based on an earlier simulation. Flap linkage mechanism design is carried out and static bench tests are conducted to verify the flap actuation mechanism performance. Different versions of test beds are developed and tested with the flap and chosen APA 200M piezoelectric actuators. Through significant improvements, a maximum deflection of ${\pm}3.7^{\circ}$ was achieved. High frequency experiments are conducted to evaluate the performance and transfer function of the test bed is determined experimentally. As the static tests are almost completed, rotor power required for testing the blade in whirl tower (centrifugal environment) is calculated and further preparations are under way.

  • PDF

Experimental Investigation of Clay Fly Ash Bricks for Gamma-Ray Shielding

  • Mann, Harjinder Singh;Brar, Gurdarshan Singh;Mann, Kulwinder Singh;Mudahar, Gurmel Singh
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1230-1236
    • /
    • 2016
  • This study aims to determine the effect of fly ash with a high replacing ratio of clay on the radiation shielding properties of bricks. Some interaction parameters (mass attenuation coefficients, half value layer, effective atomic number, effective electron density, and absorption efficiency) of clay fly ash bricks were measured with a NaI(Tl) detector at 661.6 keV, 1,173.2 keV, and 1,332.5 keV. For the investigation of their shielding behavior, fly ash bricks were molded using an admixture to clay. A narrow beam transmission geometry condition was used for the measurements. The measured values of these parameters were found in good agreement with the theoretical calculations. The elemental compositions of the clay fly ash bricks were analyzed by using an energy dispersive X-ray fluorescence spectrometer. At selected energies the values of the effective atomic numbers and effective electron densities showed a very modest variation with the composition of the fly ash. This seems to be due to the similarity of their elemental compositions. The obtained results were also compared with concrete, in order to study the effect of fly ash content on the radiation shielding properties of clay fly ash bricks. The clay fly ash bricks showed good shielding properties for moderate energy gamma rays. Therefore, these bricks are feasible and eco-friendly compared with traditional clay bricks used for construction.

Development of a flexible composite based on vulcanized silicon casting with bismuth oxide and characterization of its radiation shielding effectiveness in diagnostic X-ray energy range and medium gamma-ray energies

  • Ibrahim Demirel;Haluk Yucel
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2570-2575
    • /
    • 2024
  • The study aims to develop a novel, lead-free, flexible and lightweight composite shielding material against ionizing radiation. For this, it was used bismuth oxide (Bi2O3) in RTV-2 silicon matrix. The shielding tests were carried out in both diagnostic X-ray energies and intermediate gamma-ray energy range of up to 662 keV to determine the radiation attenuation properties of this material in terms of attenuation ratio, half value layer, tenth value layer, mean free path and lead equivalency of samples in weight of 30%, 40%, 50% in Bi2O3. In the diagnostic X-ray energy range, half value layer, tenth value layer and lead equivalency (in mm Pb) of the produced samples were measured at 80 and 100 kVp narrow beam conditions according to the requirements of EN IEC 61331-1 standard. The results show that lead equivalent values of the produced novel sheets was measured to be 0.16 mm Pb, corresponding to a 6 mm thickness of the flexible sample when it contains 30% wt. Bi2O3 in RTV matrix. The experimental findings for durability and flexibility also indicated that this new RTV-based flexible, lead -free shielding composite can be used safely for especially for manufacturing aprons, garments and thyroid guards used in mammography, radiology, nuclear medicine and dental applications in practice.

Comparison of Parallel and Fan-Beam Monochromatic X-Ray CT Using Synchrotron Radiation

  • Toyofuku, Fukai;Tokumori, Kenji;Kanda, Shigenobu;Ohki, Masafumi;Higashida, Yoshiharu;Hyodo, Kazuyuki;Ando, Masami;Uyama, Chikao
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.407-410
    • /
    • 2002
  • Monochromatic x-ray CT has several advantages over conventional CT, which utilizes bremsstrahlung white x-rays from an x-ray tube. There are several methods to produce such monochromatic x-rays. The most popular one is crystal diffraction monochromatization, which has been commonly used because of the fact that the energy spread is very narrow and the energy can be changed continuously. The alternative method is the use of fluorescent x-ray, which has several advantages such as large beam size and fast energy change. We have developed a parallel-beam and a fan-beam monochromatic x-ray CT, and compared some characteristics such as accuracy of CT numbers between those systems. The fan beam monochromatic x-rays were generated by irradiating target materials by incident white x-rays from a bending magnet beam line NE5 in 6.5 GeV Accumulation Ring at Tukuba. The parallel beam monochromatic x-rays were generated by using a silicon double crystal monochromator at the bending magnet beam line BL-20BM in Spring-8. A Cadmium telluride (CdTe) 256 channel array detector with 512mm sensitive width capable of operating at room temperature was used in the photon counting mode. A cylindrical phantom containing eight concentrations of gadolinium was used for the fan beam monochromatic x-ray CT system, while a phantom containing acetone, ethanol, acrylic and water was used for the parallel monochromatic x-ray CT system. The linear attenuation coefficients obtained from CT numbers of those monochromatic x-ray CT images were compared with theoretical values. They showed a good agreement within 3%. It was found that the quantitative measurement can be possible by using the fan beam monochromatic x-ray CT system as well as a parallel beam monochromatic X-ray CT system.

  • PDF

The evaluation for the usability ofthe Varian Standard Couch modelingusing Treatment Planning System (치료계획 시스템을 이용한 Varian Standard Couch 모델링의 유용성 평가)

  • Yang, yong mo;Song, yong min;Kim, jin man;Choi, ji min;Choi, byeung gi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.77-86
    • /
    • 2016
  • Purpose : When a radiation treatment, there is an attenuation by Carbon Fiber Couch. In this study, we tried to evaluate the usability of the Varian Standard Couch(VSC) by modeling with Treatment Planning System (TPS) Materials and Methods : VSC was scanned by CBCT(Cone Beam Computed Tomography) of the Linac(Clinac IX, VARIAN, USA), following the three conditions of VSC, Side Rail OutGrid(SROG), Side Rail InGrid(SRIG), Side Rail In OutSpine Down Bar(SRIOS). After scan, the data was transferred to TPS and modeled by contouring Side Rail, Side Bar Upper, Side Bar Lower, Spine Down Bar automatically. We scanned the Cheese Phantom(Middelton, USA) using Computed Tomography(Light Speed RT 16, GE, USA) and transfer the data to TPS, and apply VSC modeled previously with TPS to it. Dose was measured at the isocenter of Ion Chamber(A1SL, Standard imaging, USA) in Cheese Phantom using 4 and 10 MV radiation for every $5^{\circ}$ gantry angle in a different filed size($3{\times}3cm^2$, $10{\times}10cm^2$) without any change of MU(=100), and then we compared the calculated dose and measured dose. Also we included dose at the $127^{\circ}$ in SRIG to compare the attenuation by Side Bar Upper. Results : The density of VSC by CBCT in TPS was $0.9g/cm^3$, and in the case of Spine Down Bar, it was $0.7g/cm^3$. The radiation was attenuated by 17.49%, 16.49%, 8.54%, and 7.59% at the Side Rail, Side Bar Upper, Side Bar Lower, and Spine Down Bar. For the accuracy of modeling, calculated dose and measured dose were compared. The average error was 1.13% and the maximum error was 1.98% at the $170^{\circ}beam$ crossing the Spine Down Bar. Conclusion : To evaluate the usability for the VSC modeled by TPS, the maximum error was 1.98% as a result of compassion between calculated dose and measured dose. We found out that VSC modeling helped expect the dose, so we think that it will be helpful for the more accurate treatment.

  • PDF

Evaluation of Attenuation Rate Error on Skin Dosimeter using Monte Carlo Simulation in Photon and Electron Beam Therapy (광자선 및 전자선 치료에서 피부선량계의 측정과 시뮬레이션을 이용한 감약률 오차 평가)

  • Han, Moo-Jae;Yang, Seung-Woo;Heo, Seung-Uk;Bae, Sang-Il;Moon, Young-Min;Park, Sung-Kwang;Kim, Jin-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.841-848
    • /
    • 2020
  • In the field of radiation therapy using photon beams and electron beams, since each patient has a different sensitivity to radiation, skin side effects may occur even at the same dose. Therefore, if there is a risk of excessive dose to the skin, a dosimeter is attached to verify whether the correct dose is being investigated. However, since the skin dosimeter checks the attachment site visually by measuring a point dose, it is difficult to confirm an accurate dose distribution. As a result, the measurement and simulation errors of the material HgI2 in the 6 MV photon beam were 3.73% and 5.24%, respectively, at the minimum thickness of 25 ㎛, and the material PbI2 was 4.73% and 5.65%, respectively. On the other hand, as a result of the 6 MeV electron beam, the measurement and simulation errors of the material HgI2 were 1.35% and 1.12%, respectively, at a minimum thickness of 25 ㎛, and the material PbI2 showed relatively low attenuation error, 1.67% and 1.20%, respectively. Therefore, it was evaluated that the thickness of the photon beam within 25 ㎛ and the electron beam within 100 ㎛ is suitable to have a reduction rate error within 5%. This study presents a new research direction for a flexible dosimeter attached to the human body that is required in clinical practice and the construction conditions of a future skin dosimeter.