• Title/Summary/Keyword: Beacon Nodes

Search Result 78, Processing Time 0.02 seconds

A Range-Free Localization Algorithm for Sensor Networks with a Helicopter-based Mobile Anchor Node (센서 네트워크에서 모바일 앵커 노드(헬기)를 이용한 위치인식 알고리즘)

  • Lee, Byoung-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.750-757
    • /
    • 2011
  • Wireless Sensor Network is composed of a lot of sensor nodes that are densely deployed in a field. So generally this sensor nodes are spreaded using Helicopter or Fixed wing. Each node delivers own location and acquired information to user when it detects specific events. In this paper, we propose localization algorithm without range information in wireless sensor network using helicopter. Helicopter broadcasts periodically beacon signal for sensor nodes. Sensor nodes stored own memory this beacon signal until to find another beacon point(satisfied special condition). This paper develops a localization mechanism using the geometry conjecture(perpendicular bisector of a chord) to know own location. And the simulation results demonstrate that our localization scheme outperforms Centroid, APIT in terms of a higher location accuracy.

Receiver-Initiated MAC Protocol Using an Intermediate Node to Improve Performance (성능 향상을 위해 중간 노드를 이용한 개선된 수신자 주도의 MAC 프로토콜)

  • Kong, Joon-Ik;Lee, Jaeho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1423-1430
    • /
    • 2016
  • The MAC protocols, which are classified into synchronous and asynchronous MAC protocol in the wireless sensor network, have actively studied. Especially, the asynchronous MAC protocol needs to research on the algorithm synchronizing between nodes, since each node independently operates in its own duty cycle. Typically, Receiver-Initiated MAC protocol is the algorithm synchronizing particular nodes by using beacon immediately transmitted by each node when it wakes up. However, the sender consumes unnecessary energy because it blankly waits until receiving the receiver's beacon, even if it does not know when the receiver's beacon is transmitted. In this paper, we propose the MAC protocol which can improve the performance by selecting an optimal node between a sender and a receiver to overcome the disadvantages. The simulation results show that the proposed algorithm improves energy efficiency and decreases average delay time than the conventional algorithm.

A Localization Algorithm for Underwater Wireless Sensor Networks Based on Ranging Correction and Inertial Coordination

  • Guo, Ying;Kang, Xiaoyue;Han, Qinghe;Wang, Jingjing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4971-4987
    • /
    • 2019
  • Node localization is the basic task of underwater wireless sensor networks (UWSNs). Most of the existing underwater localization methods rely on ranging accuracy. Due to the special environment conditions in the ocean, beacon nodes are difficult to deploy accurately. The narrow bandwidth and high delay of the underwater acoustic communication channel lead to large errors. In order to reduce the ranging error and improve the positioning accuracy, we propose a localization algorithm based on ranging correction and inertial coordination. The algorithm can be divided into two parts, Range Correction based Localization algorithm (RCL) and Inertial Coordination based Localization algorithm (ICL). RCL uses the geometric relationship between the node positions to correct the ranging error and obtain the exact node position. However, when the unknown node deviates from the deployment area with the movement of the water flow, it cannot communicate with enough beacon nodes in a certain period of time. In this case, the node uses ICL algorithm to combine position data with motion information of neighbor nodes to update its position. The simulation results show that the proposed algorithm greatly improves the positioning accuracy of unknown nodes compared with the existing localization methods.

Analysis of Power-Saving Protocols through Beacon Interval in Multi-hop Ad Hoc Networks based on IEEE 802.11 (IEEE 802.11기반 다중 홉 Ad Hoc 망에서 Beacon 간격에 따른 Power-Saving 프로토콜의 성능분석)

  • 김동일;김동현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.141-144
    • /
    • 2003
  • The mobile radio networks can be divided into networks that has the base station or the infrastructures like AP(Access Point) and Ad Hoc network that hasn't any infrastructures. As there aren't any fixed infrastructures in Ad Hoc Networks, mobile nodes should transmit the data only among mobile nodes themselves. To supplement these weakpoints of the two networks, many studies about Ad Hocs based on the 802.11 are in progress. In this thesis, we try to propose the efficiency of the suggested protocols by comparing and analyzing power saving protocols according to the Beacon intervals in multi hop Ad Hoc Networks based on IEEE 802.11.

  • PDF

Analysis of Power-Saving Protocols through Beacon Interval in Multi-hop Ad Hoc Networks based on IEEE 802.11 (IEEE 802.11기반 다중 홉 Ad Hoc 망에서 Beacon 간격에 따른 Power-Saving 프로토콜의 성능분석)

  • 김동일;김동현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1415-1420
    • /
    • 2003
  • The mobile radio networks can be divided into networks that has the base station or the infrastructures like AP(Access Point) and Ad Hoc network that hasn't any infrastructures. As there aren't any fixed infrastructures in Ad Hoc Networks, mobile nodes should transmit the data oかy among mobile nodes themselves. To supplement these weakpoints of the two networks, many studies about Ad Hon based on the 802.11 are in progress. In this thesis, we try to propose the efficiency of the suggested protocols by comparing and analyzing power saving protocols according to the Beacon intervals in multi hop Ad Hoc Networks based on IEEE 802.11.

Sequential localization with Beacon Nodes along the Seashore for Marine Monitoring Sensor Network (해안에 설치된 비콘 노드를 이용한 해양 모니터링 센서의 순차적인 위치 파악)

  • Kim, Chung-San;Kim, Eun-Chan;Kim, Ki-Seon;Choi, Young-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.4
    • /
    • pp.269-277
    • /
    • 2007
  • Wireless sensor network system is expected to get high attention in research for now and future owing to the advanced hardware development technology and its various applicabilities. Among variety of sensor network systems, the seashore and marine sensor network, which are extended to get sampling of marine resources, environmental monitoring to prevent disaster and to be applied to the area of sea route guidance. For these marine applications to be available, however, the provision of precise location information of every sensor nodes is essential. In this paper, the sequential localization algorithm for obtaining the location information of marine sensor nodes. The sequential localization is done with the utilization of a small number of beacon nodes along the seashore and gets the location of nodes by controling the sequences of localization and also minimizes the error accumulation. The key idea of this algorithm for localization is that the localization priority of each sensor nodes is determined by the number of reference nodes' information. This sequential algorithm shows the improved error performance and also provide the increased coverage of marine sensor network by enabling the maximum localization of sensor nodes as possible.

  • PDF

SB-MAC : Energy efficient Sink node Based MAC protocol for Wireless Sensor Networks (무선 센서 네트워크 에서 에너지 효율적인 싱크노드 기반 MAC 프로토콜)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.177-182
    • /
    • 2014
  • In this paper, we propose an energy efficient sink node based MAC protocol for Wireless Sensor Networks (WSNs). The proposed sink node-based MAC (SB-MAC) protocol uses a RB(rapid beacon) frame to save sender's energy consumption and to reduce transmission delay. The RB frame is a modified IEEE 802.15.4 beacon frame. The RB frame contains the length of the sender nodes data. Using this information other nodes except sender and receiver nodes can be stay sleep mode long time to reduce energy consumption. Results have shown that the SB-MAC protocol outperformed other protocols like X-MAC and RI-MAC in terms of packet delivery delay and energy consumption. The SB-MAC protocol is especially energy efficient for the networks with one sink node and many senders.

Efficient Network Configuration Method for Mobile Nodes in Sensor Networks (센서 네트워크의 이동 노드를 위한 효율적 네트워크 구성 방법)

  • Lee, Jae-Hyung;Lee, Eung-Soo;Kim, Dong-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.113-123
    • /
    • 2010
  • In this paper, an efficient network configuration method is proposed for mobile nodes in LR-WPAN (Low Rate Wireless Personal Area Network) based on the IEEE 802.15.4 standard. The proposed MSBS (mobile sensor beacon setup) method can be used to implement a joining procedure by which an improved processing rate can be achieved. This improvement is achieved by using BOP (Beacon only Period). In this method, the performance of mobile nodes is enhanced by using information on depth, traffic, and RSSI (Received Signal Strength Indication). By using the MSBS method, trusted data can be transferred and traffic overloads that occur at specific nodes can be prevented. The information obtained from the mobile nodes in wireless networks is analyzed using the proposed method, in order to study the performance of the method. Simulation results show that the MSBS method can be used to obtain an efficient network configuration according to the mobility of nodes in LR-WPAN.

Beacon Node Based Localization Algorithm Using Received Signal Strength(RSS) and Path Loss Calibration for Wireless Sensor Networks (무선 센서 네트워크에서 수신신호세기와 전력손실지수 추정을 활용하는 비콘 노드 기반의 위치 추정 기법)

  • Kang, Hyung-Seo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • In the range-based localization, the localization accuracy will be high dependent on the accuracy of distance measurement between two nodes. The received signal strength(RSS) is one of the simplest methods of distance measurement, and can be easily implemented in a ranging-based method. However, a RSS-based localization scheme has few problems. One problem is that the signal in the communication channel is affected by many factors such as fading, shadowing, obstacle, and etc, which makes the error of distance measurement occur and the localization accuracy of sensor node be low. The other problem is that the sensor node estimates its location for itself in most cases of the RSS-based localization schemes, which makes the sensor network life time be reduced due to the battery limit of sensor nodes. Since beacon nodes usually have more resources than sensor nodes in terms of computation ability and battery, the beacon node based localization scheme can expand the life time of the sensor network. In this paper, therefore we propose a beacon node based localization algorithm using received signal strength(RSS) and path loss calibration in order to overcome the aforementioned problems. Through simulations, we prove the efficiency of the proposed scheme.

Query Technique for Quick Network Routing changing of Mobility Sensor Node in Healthcare System (헬스케어 시스템에서 이동형 센서노드의 신속한 네트워크 라우팅 변화를 위한 질의기법)

  • Lee, Seung-chul;Kwon, Tae-Ha;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.517-520
    • /
    • 2009
  • Healthcare application system has been actively researched to apply WSN technology to healthcare area with a mobile sensor node of low cost, low power, and small size. Sensor node has the problem for transmission range of RF power and time delay of the wireless routing connectivity between sensor nodes. In this paper, we proposes a new method utilizing mobile sensor nodes with relay sensor nodes for quick network routing changing using query technique in healthcare system. A query processor to control and manage the routing changing of sensor nodes in a wireless sensor network was designed and implemented. The user's PC transmits the beacon message which will change the quick link routing according to activity status of patient in wireless sensor network. We describe the implementation for query protocol that is very effective of power saving between sensor nodes.

  • PDF