• Title/Summary/Keyword: Beacon Error

Search Result 71, Processing Time 0.022 seconds

The 3-Dimensional Localization System Based on Beacon Expansion and Coordinate-Space Disassembly (비컨노드 확장과 좌표공간 분해 기반 3차원 위치인식시스템)

  • Lee, Ho Chul;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.1
    • /
    • pp.80-86
    • /
    • 2013
  • The 3-Dimensional(3D) localization system based on beacon expansion and coordinate-space disassembly for the design of the 3D localization system in indoor environment is proposed and the performance of the proposed system is analyzed in this paper. The localization ratio of the 3D localization system adapts the proposed algorithm is analyzed by the calculation of errors occurred in the coordinates that the mobile node locates. It is indicated that the average error distance of the 3D localization system adapts the proposed algorithm is less than that of the 3D localization system not adapts the proposed algorithm as 0.47m. The localization average distance error in 12 coordinates is indicated that the 1.5m case is less than 2.5m case as 0.38m by some experimentations under the condition that the distances between the ceiling and the mobile node are 1.5m and 2.5m measured from the ceiling respectively. It is seen that the 3D localization system based on beacon expansion and coordinate-space disassembly can improved the degradation of the quality of service that is caused by some conditions and performance differences in sensors.

Research of Error Optimization Techniques according to RSSI Differences between Beacons (비콘 간 RSSI 차이에 따른 오차 최적화 기법의 연구)

  • Yoon, Dong-Eon;Ban, Min-A;Park, Jung-Eun;Jeong, Ga-Yeon;Oh, Am-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.243-245
    • /
    • 2021
  • Existing beacons are suitable for providing untact services, but they have the disadvantage of difficulty in accurate indoor positioning because the deviation in signal strength increases depending on the environment. In general, trilateration technique can reduce deviation, but if the distance between beacons is quite irregular, it becomes difficult to apply the algorithm. Therefore, in this paper, we studied how to reduce the signal power measurement error between beacons. First, we transformed the distance measurement formula using RSSI, assuming that the TX values were the same. In addition, we compared measurement errors with existing beacons by searching beacons with beacons scanner applications implemented with Android. As a result, it was confirmed that if a certain distance was further away, the measurement was measured more accurately than the non-changing beacon. Through this, accurate indoor positioning will be possible even in various disability situations. It is also expected that there will be more cases of establishing services that combine beacon with non-face-to-face services.

  • PDF

Study on Multi-Mode Monopulse Signal Processing System Providing Optimal Time Delay under High Doppler Condition (고속 도플러 편이 환경에서 최적 시간지연을 갖는 다중모드 모노펄스 신호처리에 관한 연구)

  • Lee, Jaemoon;Lim, Jaesung;Ahn, Huisoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.582-589
    • /
    • 2016
  • Multi-mode monopulse system is widely used for satellite terminal like UAV because of high tracking accuracy and low size/weight profile. In order to calculate tracking error, Multi-mode monopulse system utilizes high-order mode signal, and it should have enough C/N(carrier to noise) level therefore tracking system needs narrow band filtering of received satellite beacon signal as much as possible. However, UAV suffers for beacon frequency drift derived from Doppler effect due to satellite figure 8 movement and UAV maneuvering. Therefore wideband signal processing needs to be considered in advance for exact doppler compensation and consequent time delay. In this paper, we propose the multi-stage Digital Signal processing system for beacon signal, which could minimize the signal delay under high Doppler and low C/N condition.

Hierarchical superframe formation algorithm in 802.15.3 network (네트워크에서 계층적 슈퍼프레임 알고리듬을 통한 대역폭의 효율적인 활용)

  • Youn Kyu Jung;June Sun Do;Lee Jang Yeon;Lee Hyeon Seok;Won Yun Jae;Kwon Tai Gil;Torok Attila;Vajda Lorant
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10B
    • /
    • pp.849-856
    • /
    • 2004
  • This paper proposes a novel superframe formation algorithm for wireless systems with time-slotted superframe structure. The design objective of the proposed algorithm is to provide high performance, stability, error tolerance, as well as power-saving features. The paper presents a comprehensive performance analysis of the Proposed superframe formation algorithm with different types of traffic applied. During analysis several performance metrics are investigated. The error tolerance to beacon loss and the behavior of CBR flows are also studied. We show that the proposed algorithm inherits the advantages of the previously used algorithms, while providing additional features.

A Localization Algorithm for Underwater Wireless Sensor Networks Based on Ranging Correction and Inertial Coordination

  • Guo, Ying;Kang, Xiaoyue;Han, Qinghe;Wang, Jingjing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4971-4987
    • /
    • 2019
  • Node localization is the basic task of underwater wireless sensor networks (UWSNs). Most of the existing underwater localization methods rely on ranging accuracy. Due to the special environment conditions in the ocean, beacon nodes are difficult to deploy accurately. The narrow bandwidth and high delay of the underwater acoustic communication channel lead to large errors. In order to reduce the ranging error and improve the positioning accuracy, we propose a localization algorithm based on ranging correction and inertial coordination. The algorithm can be divided into two parts, Range Correction based Localization algorithm (RCL) and Inertial Coordination based Localization algorithm (ICL). RCL uses the geometric relationship between the node positions to correct the ranging error and obtain the exact node position. However, when the unknown node deviates from the deployment area with the movement of the water flow, it cannot communicate with enough beacon nodes in a certain period of time. In this case, the node uses ICL algorithm to combine position data with motion information of neighbor nodes to update its position. The simulation results show that the proposed algorithm greatly improves the positioning accuracy of unknown nodes compared with the existing localization methods.

Evaluation of Position Error and Sensitivity for Ultrasonic Wave and Radio Frequency Based Localization System (초음파와 무선 통신파 기반 위치 인식 시스템의 위치 오차와 민감도 평가)

  • Shin, Dong-Hun;Lee, Yang-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.183-189
    • /
    • 2010
  • A localization system for indoor robots is an important technology for robot navigation in a building. Our localization system imports the GPS system and consists of more than 3 satellite beacons and a receiver. Each beacon emits both an ultrasonic wave and radio frequency. The receiver in the robot computes the distance from it to the beacon by measuring the flying time difference between ultrasonic wave and radio frequency. It then computes its position with the distance information from more than 3 beacons whose positions are known. However, the distance information includes errors caused from the ultrasonic sensors; we found it to be limited to within one period of a wave (${\pm}2\;cm$ tolerance). This paper presents a method for predicting the maximum position error due to distance information errors by using Taylor expansion and singular value decomposition (SVD). The paper also proposes a measuring parameter such as sensitivity to represent the accuracy of the indoor robot localization system in determining the robot's position with regards to the distance error.

Performance Evaluation of RSSI-based Various Trilateration Localization (RSSI기반에서 다양한 삼변측량 위치인식 기법들의 성능평가)

  • Kim, Sun-Gwan;Kim, Tae-Hoon;Tak, Sung-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.493-496
    • /
    • 2011
  • Currently in the development of community wireless technology is gaining interest in location-based services and as a result, the importance of the location information is a growing trend. To calculate the location information is being suggested several ways, among them Trilateration is representative. Trilateration is three beacon nodes, the distance between the location in which you want to calculate with information. Beacon from a node to know where to get information when the distance between the obstacle and the distance error caused by the surrounding environment, which leads to the exact location can not be obtained. Currently due to distance error, location information has a variety of algorithms to reduce the error. However, a systematic analysis of these algorithms is not progress. This paper analyzes the location-aware technologies, and the error the distance of the location information to reduce errors in the various aspects of the algorithm for the systematic and empirical comparison was evaluated through the analysis.

  • PDF

Robust Positioning-Sensing for a Mobile Robot (모바일 로봇의 강인한 위치 추정 기법)

  • Lee, Jang-Myung;Hwang, Jin-Ah;Hur, Hwa-Ra;Kang, Jin-Gu
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.221-226
    • /
    • 2007
  • A robust position-sensing system is proposed in this paper for ubiquitous mobile robots which move indoor as well as outdoor. The Differential GPS (DGPS) which has position estimation error of less than 5 m is a general solution when the mobile robots are moving outdoor, while an active beacon system (ABS) with embedded ultrasonic sensors is selected as an indoor positioning system. The switching from the outdoor to indoor or vice versa causes unstable measurements on account of the reference and algorithm changes. To minimize the switching time in the position estimation and to stabilize the measurement, a robust position-sensing system is proposed. In the system, to minimize the switching delay, the door positions are stored and updated in a database. The reliability and accuracy of the robust positioning system based on DGPS and ABS are verified through the real experiments using a mobile robot prepared for this research and demonstrated.

  • PDF

ANN-based Adaptive Distance Measurement Using Beacon (비콘을 사용한 ANN기반 적응형 거리 측정)

  • Noh, Jiwoo;Kim, Taeyeong;Kim, Suntae;Lee, Jeong-Hyu;Yoo, Hee-Kyung;Kang, Yungu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.147-153
    • /
    • 2018
  • Beacon enables one to measure distance indoors based on low-power Bluetooth low energy (BLE) technology, while GPS (Global Positioning System) only can be used outdoors. In measuring indoor distance using Beacon, RSSI (Received Signal Strength Indication) is considered as the one of the key factors, however, it is influenced by various environmental factors so that it causes the huge gap between the estimated distance and the real. In order to handle this issue, we propose the adaptive ANN (Artificial Neural Network) based approach to measuring the exact distance using Beacon. First, we has carried out the preprocessing of the RSSI signals by applying the extended Kalman filter and the signal stabilization filter into decreasing the noise. Then, we suggest the multi-layered ANNs, each of which layer is learned by specific training data sets. The results showed an average error of 0.67m, a precision of 0.78.

A Study on the Technological and Environmental Factors Affecting the Accuracy of Beacon Based Indoor Positioning System (기술적, 환경적 요소에 따른 비콘 기반 실내 측위 정확도 변화연구)

  • Byeon, Tae-Woo;Jang, Seong-Yong
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.2
    • /
    • pp.21-29
    • /
    • 2016
  • Indoor location system has been used Wi-Fi to get a location. After the development of BLE(Bluetooth Low Energy), the interest in the method of a indoor positioning had been move on. It has more advantages than using Wi-Fi. Easy installation, low power consumption, low signal interference and changeable setting(Advertising interval, tx power, etc.). These things can improve efficiency or accuracy in a indoor positioning system. For this reason, recent indoor positioning system uses BLE rather than Wi-Fi. Accordingly, error factors of BLE beacon based indoor positioning should be studying for high accuracy of indoor positioning. In this research, set up few experiment scenarios and keep a close watch on how technological, environmental factor is affecting positioning accuracy. When a application uses largest signal strength to get the indoor location, the mean error of experimental results was decreased compare to using received signal strength in real-time. The result was same when the application applied average and standard deviation to get the indoor location. Changing advertising interval had an effect on the mean error of indoor positioning. Short advertising interval makes the lower mean error than large advertising interval.