• Title/Summary/Keyword: Beach Deformation

Search Result 46, Processing Time 0.021 seconds

Characterisitics of Wave-Induced Current in the vicinity of Wolpo Harbor (월포항 인근해역에서의 해빈류 특성)

  • Lee, Seong-Dae
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.661-669
    • /
    • 2000
  • The accurate prediction of wave-induced currents is indispensible to analyze the beach deformation due to the sediment transport or dispersion in the surf zone, which often gives rises to serious environmental problems in the coastal region. Although many numerical models have been suggested up to now, it is not easy to properly simulate wave-induced currents, in particular, over a complex topography. In order to solve these problems, we have to understand the mechanism of wave transformation and wave-induced currents, to compare results numerical models with those of field measurements, and to find the validity and the applicability of them. And, also the validity of the model has been confirmed by the field investigation.

  • PDF

이상파랑하에서의 해빈변화특성 해석

  • Kim, Hui-Jae;An, Hyo-Jae;Kim, Gang-Min;Lee, Jung-U
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.241-243
    • /
    • 2014
  • Recently, as the coastal erosion impacts greats to both social and economical aspects, each local government is trying to setup its countermeasures. However, it is necessary to survey the change of sediment movement characteristics and investigate the continuous environment change by long-term monitoring after building prevention constructions. In this study, predictions on wave deformation and sediment movement deduced through the numerical modeling are made, based on the ordinary and extraordinary wave through seasonal superiority wave direction, height, period and long-term wave characteristics on the eroded beach of central West sea.

  • PDF

Development of Random Wave Deformation Model due to Breaking on Arbitrary Beach Profiles (복합단면에 있어서 불규칙파에 의한 쇄파변형 모델의 개발)

  • ;Yoshimi Goda
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.87-94
    • /
    • 1996
  • Random wave breaking is one of the most important phenomena in coastal engineering. For two and half decades, various models have been proposed to predict wave height variations in the surf zone. However, some models are applicable to plane beaches only, some requires clumsy computation for a joint probability density of wave heights and periods, and some others need calibration with individual wave data. The present study aims at formulating a model simple enough but reasonably accurate. The merits of the present model are as follows: It is applicable to any shapes of bottom profiles; It requires the input data of incident wave heights and periods only without necessity of coefficient calibration with field data; and its computation time is minimal because it deals with representative waves directly.

  • PDF

Spatial analysis of Shoreline change in Northwest coast of Taean Peninsula

  • Yun, MyungHyun;Choi, ChulUong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.1
    • /
    • pp.29-38
    • /
    • 2015
  • The coastline influenced naturally and artificially changes dynamically. While the long-term change is influenced by the rise in the surface of the sea and the changes in water level of the rivers, the short-term change is influenced by the tide, earthquake and storm. Also, man-made thoughtless development such as construction of embankment and reclaimed land not considering erosion and deformation of coast has been causes for breaking functions of coast and damages on natural environment. In order to manage coastal environment and resources effectively, In this study is intended to analyze and predict erosion in coastal environment and changes in sedimentation quantitatively by detecting changes in coastal line from data collection for satellite images and aerial LiDAR data. The coastal line in 2007 and 2012 was extracted by manufacturing Digital Surface Model (DSM) with Aviation LiDAR materials. For the coastal line in 2009 and 2010, Normalized Difference Vegetation Index (NDVI) method was used to extract the KOMPSAT-2 image selected after considering tide level and wave height. The change rate of the coastal line is varied in line with the forms of the observation target but most of topography shows a tendency of being eroded as time goes by. Compared to the relatively monotonous beach of Taean, the gravel and rock has very complex form. Therefore, there are more errors in extraction of coastlines and the combination of transect and shoreline, which affect overall changes. Thus, we think the correction of the anomalies caused by these properties is required in the future research.

Marine Terrace of Daebo-Guryongpo-Gampo, SE Korea(II) (대보-구룡포-감포 지역의 해안단구(II))

  • 최성자
    • Economic and Environmental Geology
    • /
    • v.37 no.2
    • /
    • pp.245-253
    • /
    • 2004
  • The 36km-long Daebo-Campo coast has a well-developed marine terraces divided to six steps by elevation of paleoshoreline : 0.5 m(T1), 10 m(T2), 30 m(T3), 40 m(T4), 60 m(T5) and 75 m(T6). The 2$^{nd}$ and 3$^{nd}$ platforms in Daebo to Guryongpo are wider and more distinctive than those of Guryongpo to Gampo. The 3$^{nd}$ terrace of 30 m high is subdivided to two flights as lower(T3b) and upper(T3a) by old sea cliff. Platform age is unclear because of coral fossil free. However, the terrace age could be determined with convergent OSL ages from beach sediments on 2$^{nd}$ step(T2). OSL ages of the terrace of 10 m high range in 60-70 ka. It reveals that the 2$^{nd}$ -step platform correlates to Oxygen Isotope Time scale, substage 5a(ca. 80 ka), and that uplift rate is ca. 0.19 m/ka for 2$^{nd}$ terrace at Daebo-Campo coast. If considering equivalent uplift rate for all terraces since the Late Pleistocene, the 3$^{rd}$ and 4$^{th}$ terraces would be 5e substage and 7 stage. The 30 m-high terrace provides a good indicator for uplift at Daebo-Gampo coast since 125,000 yrs(MIS 5e). It suggests that the local neotectonic deformation might cause an optional uplift rate of ca. 0.19 m/ka along the SE coast of Korea.

Development of a Numerical Model to Analyze the Formation and Development Process of River Mouth Bars (하구사주의 생성 및 발달을 해석하기 위한 수치모델의 개발)

  • Kim, Yeon-Joong;Woo, Joung-Woon;Yoon, Jong-Sung;Kim, Myoung-Kyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.308-320
    • /
    • 2021
  • An integrated sediment management approach that includes the recovery of the amount of declined sediment supply is effective as a fundamental solution to coastal erosion. During planning, it is essential to analyze the transfer mechanism of the sediments generated from estuaries (the junction between a river and sea) to assess the amount and rate of sediment discharge (from the river to sea) supplied back to the coast. Although numerical models that interpret the tidal sand bar flushing process during flooding have been studied, thus far, there has been no study focusing on the formation and development processes of tidal sand bars. Therefore, this study aims to construct wave deformation, flow regime calculation, and topographic change analysis models to assess the amount of recovered sediment discharge and reproduce the tidal sand bar formation process through numerical analysis for integrated littoral drift management. The tidal sand bar formation process was simulated, and the wave energy and duration of action concepts were implemented to predict the long-term littoral movement. The river flux and wave conditions during winter when tidal sand bars dominantly develop were considered as the external force conditions required for calculation. The initial condition of the topographic data directly after the Maeupcheon tidal sand bar flushing during flooding was set as the initial topography. Consequently, the tidal sand bar formation and development due to nearshore currents dependent on the incident wave direction were reproduced. Approximately 66 h after the initial topography, a sand bar formation was observed at the Maengbang estuary.