• Title/Summary/Keyword: Be-NOx

Search Result 863, Processing Time 0.024 seconds

Evaluation of ZSM-5 supported metal catalyst for NOx removal (NOx 제거를 위한 금속 담지 ZSM-5 촉매 평가)

  • Kim, Jin-Gul;Yoo, Seung-Joon;Kim, Seong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.2015-2020
    • /
    • 2009
  • $NO_x$ reduction of stationary exhaust was performed at atmospheric condition and the temperature ranging from $200^{\circ}C$ to $500^{\circ}C$ over ZSM-5 supported metal catalyst. The characteristics of the prepared catalysts were investigated using the analytical techniques such as SEM, XRD, EDX, ICP and ITR. The results of EDX and ICP analysis demonstrated that the most part of transition metal existed on the exterior surface of support. Maximum de-$NO_x$ yield over Fe/ZSM-5 shown between $380^{\circ}C$ and $400^{\circ}C$ was presumed to be due to the maximum H2 reduction rate at $400^{\circ}C$ of ITR.

Combustion Characteristics of Ammonia-Gasoline Dual-Fuel System in a One liter Engine (1리터급 엔진을 이용한 암모니아-가솔린 혼소 성능 특성)

  • Jang, Jinyoung;Woo, Youngmin;Yoon, Hyung Chul;Kim, Jong-Nam;Lee, Youngjae;Kim, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.1-7
    • /
    • 2015
  • An ammonia fuel system is developed and applied to a 1 liter gasoline engine to use ammonia as primary fuel. Ammonia is injected separately into the intake manifold in liquid phase while gasoline is also injected as secondary fuel. As ammonia burns 1/6 time slower than gasoline, the spark ignition is needed to be advanced to have better combustion phasing. The test engine showed quite high variation in the power output to lead high increase in THC emission with large amount of ammonia, that is, higher than 0.7 ammonia-gasoline fuel ratios.

Evolutionary Design of Radial Basis Function-based Polynomial Neural Network with the aid of Information Granulation (정보 입자화를 통한 방사형 기저 함수 기반 다항식 신경 회로망의 진화론적 설계)

  • Park, Ho-Sung;Jin, Yong-Ha;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.862-870
    • /
    • 2011
  • In this paper, we introduce a new topology of Radial Basis Function-based Polynomial Neural Networks (RPNN) that is based on a genetically optimized multi-layer perceptron with Radial Polynomial Neurons (RPNs). This study offers a comprehensive design methodology involving mechanisms of optimization algorithms, especially Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization (PSO) algorithms. In contrast to the typical architectures encountered in Polynomial Neural Networks (PNNs), our main objective is to develop a design strategy of RPNNs as follows : (a) The architecture of the proposed network consists of Radial Polynomial Neurons (RPNs). In here, the RPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Fuzzy C-Means (FCM) clustering method. The RPN dwells on the concepts of a collection of radial basis function and the function-based nonlinear (polynomial) processing. (b) The PSO-based design procedure being applied at each layer of RPNN leads to the selection of preferred nodes of the network (RPNs) whose local characteristics (such as the number of input variables, a collection of the specific subset of input variables, the order of the polynomial, and the number of clusters as well as a fuzzification coefficient in the FCM clustering) can be easily adjusted. The performance of the RPNN is quantified through the experimentation where we use a number of modeling benchmarks - NOx emission process data of gas turbine power plant and learning machine data(Automobile Miles Per Gallon Data) already experimented with in fuzzy or neurofuzzy modeling. A comparative analysis reveals that the proposed RPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

3-D LES for Reacting and Non-reacting Flow Characteristics on a Swirl Stabilized Annular Combustor (스월 환형연소기의 반응 및 비반응 유동 특성 연구를 위한 3차원 Large Eddy Simulation)

  • Kim, Jong-Chan;Sung, Hong-Gye;Cha, Bong-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.449-452
    • /
    • 2008
  • Flow difference between reacting and non-reacting case in a swirl stabilized annular combustor is investigated using 3D Large Eddy Simulation with flamelet turbulent combustion model. The combustor of concern is the LM6000, lean premixed dry low-NOx annular combustor, developed by GEAE. Boundary conditions are based on experimental data. Heat release as a result of combustion put the dilatation of density in primary combustion zone highly increased so that the main swirl stream behind of a swirl cup stretched further downstream than that of non-reacting case. The oval shape of core flow in cross-section to flow direction, which clearly observed in non-reacting case, tends to be circle, and small vorticities in wide range in non-reacting case disappears, but the size of iso-vorticity increase in reacting case.

  • PDF

Flow-induced pressure fluctuations of a moderate Reynolds number jet interacting with a tangential flat plate

  • Marco, Alessandro Di;Mancinelli, Matteo;Camussi, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.243-257
    • /
    • 2016
  • The increase of air traffic volume has brought an increasing amount of issues related to carbon and NOx emissions and noise pollution. Aircraft manufacturers are concentrating their efforts to develop technologies to increase aircraft efficiency and consequently to reduce pollutant discharge and noise emission. Ultra High By-Pass Ratio engine concepts provide reduction of fuel consumption and noise emission thanks to a decrease of the jet velocity exhausting from the engine nozzles. In order to keep same thrust, mass flow and therefore section of fan/nacelle diameter should be increased to compensate velocity reduction. Such feature will lead to close-coupled architectures for engine installation under the wing. A strong jet-wing interaction resulting in a change of turbulent mixing in the aeroacoustic field as well as noise enhancement due to reflection phenomena are therefore expected. On the other hand, pressure fluctuations on the wing as well as on the fuselage represent the forcing loads, which stress panels causing vibrations. Some of these vibrations are re-emitted in the aeroacoustic field as vibration noise, some of them are transmitted in the cockpit as interior noise. In the present work, the interaction between a jet and wing or fuselage is reproduced by a flat surface tangential to an incompressible jet at different radial distances from the nozzle axis. The change in the aerodynamic field due to the presence of the rigid plate was studied by hot wire anemometric measurements, which provided a characterization of mean and fluctuating velocity fields in the jet plume. Pressure fluctuations acting on the flat plate were studied by cavity-mounted microphones which provided point-wise measurements in stream-wise and spanwise directions. Statistical description of velocity and wall pressure fields are determined in terms of Fourier-domain quantities. Scaling laws for pressure auto-spectra and coherence functions are also presented.

Match Field based Algorithm Selection Approach in Hybrid SDN and PCE Based Optical Networks

  • Selvaraj, P.;Nagarajan, V.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5723-5743
    • /
    • 2018
  • The evolving internet-based services demand high-speed data transmission in conjunction with scalability. The next generation optical network has to exploit artificial intelligence and cognitive techniques to cope with the emerging requirements. This work proposes a novel way to solve the dynamic provisioning problem in optical network. The provisioning in optical network involves the computation of routes and the reservation of wavelenghs (Routing and Wavelength assignment-RWA). This is an extensively studied multi-objective optimization problem and its complexity is known to be NP-Complete. As the exact algorithms incurs more running time, the heuristic based approaches have been widely preferred to solve this problem. Recently the software-defined networking has impacted the way the optical pipes are configured and monitored. This work proposes the dynamic selection of path computation algorithms in response to the changing service requirements and network scenarios. A software-defined controller mechanism with a novel packet matching feature was proposed to dynamically match the traffic demands with the appropriate algorithm. A software-defined controller with Path Computation Element-PCE was created in the ONOS tool. A simulation study was performed with the case study of dynamic path establishment in ONOS-Open Network Operating System based software defined controller environment. A java based NOX controller was configured with a parent path computation element. The child path computation elements were configured with different path computation algorithms under the control of the parent path computation element. The use case of dynamic bulk path creation was considered. The algorithm selection method is compared with the existing single algorithm based method and the results are analyzed.

Evaluation of ammonia (NH3) emissions from soil amended with rice hull biochar

  • Park, Seong-Yong;Choi, Ha-Yeon;Kang, Yun-Gu;Park, Seong-Jin;Luyima, Deogratius;Lee, Jae-Han;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1049-1056
    • /
    • 2020
  • Ultrafine dust causes asthma and respiratory and cardiovascular diseases when inhaled. Ammonia (NH3) plays a big role in ultrafine dust formation in the atmosphere by reacting with nitrogen oxides (NOx) and sulfur oxides (SOx) emitted from various sources. The agricultural sector is the single largest contributor of NH3, with the vast majority of emissions ensuing from fertilizers and livestock sector. Interest in using biochar to attenuate these NH3 emissions has grown. This experiment was conducted to study the effects of using rice hull biochar pyrolyzed at three different temperatures of 250℃ (BP 4.6, biochar pH 4.6), 350℃ (BP 6.8), and 450℃ (BP 10.3) on the emission of ammonia from soil fertilized with urea. The emissions of NH3 initially increased as the experiment progressed but decreased after peaking at the 84th hour. The amount of emitted NH3 was lower in soil with biochar amendments than in that without biochar. Emissions amongst biochar-amended soils were lowest for the BP 6.8 treatment, followed in an ascending order by BP 10.3 and BP 4.6. Since BP 6.8 biochar with neutral pH resulted in the lowest amount of NH3 emitted, it can be concluded that biochar's pH has an effect on the emissions of NH3. The results of this study, therefore, indicate that biochar can abate NH3 emissions and that a neutral pH biochar is more effective at reducing gaseous emissions than either alkaline or acidic biochar.

Experimental Study on Mixing Efficiency of Exhaust Gas and Reductant According to SCR Mixer Shape (SCR 믹서형상에 따른 배기가스와 환원제 혼합 효율에 관한 실험적 연구)

  • Choe, Munseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.74-79
    • /
    • 2021
  • This study examined the mixing efficiency of exhaust gas and urea according to the mixer shape in the SCR system. For the experiment, an SCR simulation system was manufactured, and a uniformity detector was attached to the catalyst location to measure the uniformity. The experiment was conducted by setting the exhaust-gas flow rate, temperature, mixer type, and catalyst distance as variables. The experimental results confirmed the swirl angle analysis, urea number distribution, and uniformity. The swirl angle experiment of Models A and B confirmed that the swirl angle of Model A was formed approximately 7 to 8 degrees higher over the entire RPM range. When there was no mixer in the SCR system, the urea and water were concentrated to one side. Mixer Model A showed an even distribution overall, and Model B showed a slightly concentrated tendency at the beginning but then showed a stable distribution of urea. The mixing efficiency of 90%, which was the uniformity target, could be satisfied in Model A and Model B. In particular, Model A showed excellent results that satisfied 90% efficiency at 10 cm of the catalyst position.

The Fuel Characteristics of Diesel by Water Contamination (수분오염에 따른 경유의 연료적 특성)

  • Lim, Young-Kwan;Won, Ki-Yoe;Kang, Byung-Seok;Park, So-Hwi;Park, Jang-Min;Kang, Dea-Hyuk
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.385-390
    • /
    • 2020
  • It rains heavily, such as long rain and typhoons, during a typical rainy season in Korea. In this season, several fuel contamination accidents by water and vehicular problems caused by water contaminated fuel occur. Many research groups have studied the effects of water contaminated fuel on vehicles and environment. However the characteristics of water contaminated fuel have not been studied. In this study, we prepared diesel samples with a constant ratio of water (0~30 volume %) using an emulsifier. Then, we analyzed these diesel samples for their representative fuel properties. In the analytical results, diesel with 30% water showed an increase in fuel properties such as density (823→883 kg/㎥), kinematic viscosity (2.601→6.345 ㎟/s), flash point (47→56℃), pour point (-22→2℃), CFPP (cold filter plugging point) (-17→20℃) and copper corrosion number (1a→2a). The low temperature characteristics, such as low pour point and CFPP, blocks the fuel filter in the cold season. In addition, water contaminated diesel decreases lubricity (190→410 ㎛) under high frequency reciprocating rig (HFRR) and derived cetane number (54.81→34.25). The low lubricity of fuel causes vehicle problem such as pump and injector damage owing to severe friction. In addition, the low cetane diesel fuel increases exhaust gases such as NOx and particulate matters (PM) owing to incomplete combustion. This study can be used to identify the problems caused by water contamination to vehicle and fuel facilities.

Analysis of Emissions of Agricultural Tractor according to Engine Load Factor during Tillage Operation (엔진 부하율에 따른 트랙터 경운 작업 시 배기가스 분석)

  • Lee, Jun Ho;Jeon, Hyeon Ho;Baek, Seung Yun;Baek, Seung Min;Kim, Wan Soo;Siddique, Md. Abu Ayub;Kim, Yong Joo
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.54-61
    • /
    • 2022
  • This is a basic study analyzing emissions of an agricultural tractor during tillage operations. In this study, CO, THC, NOx, and PM considered as emission factor were analyzed during plow and rotary tillage operation by the tractor. Engine torque and rotational speed were measured through ECU. Engine power was calculated using engine torque and rotational speed. The emissions was calculated based on the number of units, rated power, load factor, and operating time. Results showed that the load factor was calculated almost twice, which was higher than 0.48. It was also observed that the emission of the tractor was variable for different agricultural operations because tractor loads were different based on operations. There was a difference in emissions due to differences in plow and rotary working hours. To estimate the emission of agricultural tractor based field operations in detail, it is necessary to consider TAF (Transient Adjustment Factor) and DFA (Deterioration factor). In the future, TAF and DFA will be considered to estimate emissions of the agricultural tractor. Finally, results of this study can contribute to the literature to estimate tractor emissions accurately.