• Title/Summary/Keyword: Be-NOx

Search Result 863, Processing Time 0.029 seconds

NOx Reduction in the $10MW_{e}$ Power Boiler by Combustion Improvement (연소개선에 의한 $10MW_{e}$급 발전용 보일러의 NOx 저감)

  • Kim, Tai-Hyeung;Kim, Sung-Chul;Ahn, Kook-Young;Hong, Sung-Sun
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.26-34
    • /
    • 2000
  • Geometry change of burner nozzle has influence on fuel atomizing and combustion characteristics. NOx reduction technologies can be divided into two method; Before combustion method(NOx treatment of fuel) and After combustion method(NOx treatment of flue gas). In this study, experiments are carried out using difference nozzle and combustion condition change to reduce NOx in heavy oil fired thermal utility boiler. These methods have advantage like easy application and low installation cost. By this method NOx can be reduced by 18% and maintain CO emission level.

  • PDF

An Experimental Studies on Flame and NOx Emission Characteristics of Rapid Mix Combustor (초 저 NOx 선단 예혼합 연소기의 화염 및 NOx 배출 특성 연구)

  • Mun, Min-Uk;Kim, Se-Won;Shin, Myung-Chul;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.122-127
    • /
    • 2006
  • The objective of this research is to determine generally applicable design principles for the development of Rapid mix burner. Details operating RMB(Rapid mix burner) is designed that thermal NOx and prompt NOx formation be reduced through control of low peak flame temperature, and nearly uniform flame temperature by rapid mixing at the ignition point. Results from RMB(Rapid mix burner) achieving lower than 43 ppm NOx emissions and nearly flame temperature uniform

  • PDF

DIESEL ENGINE NOx REDUCTION BY SNCR UNDER SIMULATED FLOW REACTOR CONDITIONS

  • Nam, Chang-Mo;Kwon, Gi-Hong;Mok, Young-Sun
    • Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.149-155
    • /
    • 2006
  • NOx reduction experiments were conducted by direct injection of urea into a diesel fueled, combustion-driven flow reactor which simulated a single engine cylinder ($966cm^3$). NOx reduction tests were carried out over a wide range of air/fuel ratios (A/F=20-40) using an initial NOx level of 530ppm, and for normalized stoichiometric ratios of reductant to NOx (NSR) of 1.5 to 4.0. The results show that effective NOx reduction with urea occurred over an injection temperature range of 1100 to 1350K. NOx reduction increased with increasing NSR values, and about a 40%-60% reduction of NOx was achieved with NSR=1.5-4.0. Most of the NOx reduction occurred within the cylinder and head section (residence time <40msec), since temperatures in the exhaust pipe were too low for additional NOx reduction. Relatively low NOx reduction is believed to be due to the existence of higher levels of CO and unburned hydrocarbons (UHC)inside the cylinder, and large temperature drops along the reactor. Injection of secondary combustible additives (diesel fuel/$C_2H_6$) into the exhaust pipe promoted further substantial NOx reduction (5%-30%) without shifting the temperature windows. Diesel fuel was found to enhance NOx reduction more than $C_2H_6$, and finally practical implications are further discussed.

The Low NOx Characteristics of the Primary Zone in Micro Turbine Combustor (마이크로 터빈 연소기 주연소영역의 저 NOx 생성 특성)

  • Son, M.G.;Ahn, K.Y.;Lee, H.S.;Yoon, J.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.155-160
    • /
    • 2001
  • The low NOx characteristics have been investigated to develop the combustor for micro turbine. The lean premixed combustion technology was applied to reduce the NOx emission. The test was conducted at the condition of high temperature and ambient pressure. The combustion air which has the temperature of $450\sim650K$ were supplied to the combustor through the air preheater. The temperature and emissions of NOx and CO were measured at the exit of combustor, The exit temperature and NOx were increased and CO was decreased with increasing inlet air temperature. The premixing chamber can be operated very lean condition of equivalence ratio around 0.35. The NOx was decreased with decreasing the equivalence ratio. The CO was decreased with decreasing the equivalence ratio, but the CO was increased with decreasing the equivalence ratio below 0.4. But, at the very lean condition of equivalence ratio below 0.35 both NOx and CO were increased because of the flame unstability. The NOx was decreased and CO was increased with increasing inlet air flowrate. This results can be used to determine the size of combustor. Consequently the performance of combustor shows the possibility of the application to the gas turbine system.

  • PDF

NOx Formation Characteristics on Heat Loss Rate for CH4/Air Premixed Flames in a Perfectly Stirred Reactor (완전혼합 반응기에서 CH4/Air 예혼합화염의 열손실율에 따른 Nox 생성특성)

  • Hwang, Cheol-Hong;Lee, Kee-Man;Kum, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1465-1472
    • /
    • 2009
  • The effect of heat loss rate on NOx formation of $CH_4/air$premixed flame were examined numerically in a perfectly stirred reactor. The following conclusions were drawn. Under the adiabatic wall condition, an increase in the residence time causes a remarkable increases in NOx emission. Under the heat loss conditions, however, NOx decreases significantly as the heat transfer coefficient and residence time increase. As the heat loss rate increases, Thermal NO mechanism and Re-burning NO mechanism play an important role in the NOx reduction, but Prompt NO mechanism and $N_2O$-intermediate NO mechanism lead to the increase in NOx production. Although the NOx formation is actually related to complex NOx mechanism with the changes in the heat transfer coefficient and residence time, it was found that NOx concentration can be represented by independent Thermal NO mechanism. From these results, new NOx correlation combined with the heat loss rate and residence time was suggested for predicting the NOx concentration in a practical $CH_4/air$premixed combustor.

A Study on the Inlet NOx Estimation of SCR System in a Refuse Incineration Plant by Using General Structured Observer (일반 구조형 관측기를 이용한 소각장 SCR 시스템의 Inlet NOx 추정에 관한 연구)

  • Lee, Chung-Hwan;Kim, In-Gyu;Kim, Hwan-Seong;Kim, Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.123-128
    • /
    • 2001
  • The function of SCR system in refuse incineration plant is to reduce the harmful combustion gases especially NOx which make serious environmental pollution. The SCR system normally have a NOx measurement system such as inlet NOx analyzer and outlet T.M.S.(Tele Monitoring System) to control the outlet NOx in stack. The NOx measurement system is very important, however there are frequently happened sensing problems and it need maintenance periodically. In this paper, we propose an estimation method of inlet NOx of SCR system by using general structured observer. The inlet NOx is considered as an input disturbance and it is modelled by applying FFT method in frequency domains. Through the design of general structured observer, the outlet NOx can be estimated by using observation error between real outlet NOx and estimated outlet NOx. The effectiveness of the proposed method is shown by comparing to a measured inlet NOx data.

  • PDF

NOx Reduction Characteristics of Air Staging Burner for Pulverized-coal Combustion (공기 다단공급식 미분탄 버너의 NOx 저감 특성)

  • Park, Chu-Sik;Kim, Sung-Won;Choi, Snag-Il
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.153-160
    • /
    • 2001
  • The combustion test used DTF was performed to obtain the characteristics of NOx emission and reduction. In this test, major factor of NOx emission was a stoichiometric air ratio. At the onset of combustion to be rich oxygen, NOx was produced rapidly. Optimum condition for NOx reduction was formed under about AR:0.7 in the combustion test of Alaska coal. Investigations were undertaken with 200KW(th) test combustor. In combustion test, the major variables were coal feed ratio of center/outer, stoichiometric air ratio at the onset of combustion. The lowest NOx emission, 182ppm(6% O2 base), was achieved at about AR:0.6 of the first combustion stage with low NOx burner. Also, unburned carbon content of char collected in this combustion condition was about 1wt%.

  • PDF

Role of Nox4 in Neuronal Differentiation of Mouse Subventricular Zone Neural Stem Cells (쥐의 뇌실 하 영역(SVZ) 신경 줄기 세포의 신경 세포로의 분화 과정에서 Nox4의 역할)

  • Park, Ki-Youb;Na, Yerin;Kim, Man Su
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.8-16
    • /
    • 2016
  • Reactive oxygen species (ROS), at appropriate concentrations, mediate various normal cellular functions, including defense against pathogens, signal transduction, cellular growth, and gene expression. A recent study demonstrated that ROS and ROS-generating NADPH oxidase (Nox) are important in self-renewal and neuronal differentiation of subventricular zone (SVZ) neural stem cells in adult mouse brains. In this study, we found that endogenous ROS were detected in SVZ neural stem cells cultured from postnatal mouse brains. Nox4 was predominantly expressed in cultured cells, while the levels of the Nox1 and Nox2 transcripts were very low. In addition, the Nox4 gene was highly upregulated (by up to 10-fold) during neuronal differentiation. Immunocytochemical analysis detected the Nox4 protein mainly in neurons positive for the neuronal specific tubulin Tuj1. After differentiation, endogenous ROS were detected exclusively in neuron-like cells with processes. In addition, perturbation of the cellular redox state with N-acetyl cysteine, a ROS scavenger, during neuronal differentiation greatly inhibited neurogenesis. Lastly, knockdown of Nox4 using short hairpin RNA decreased neurogenesis. These findings suggest that Nox4 may be a major ROS-generating enzyme in postnatal SVZ neural stem cells, and Nox4-mediated ROS generation may be important in their neuronal differentiation.

Combined De-NOx Process with $NH_3$ SCR and Non-thermal Plasma Process for Removing NOx and Soot from Diesel Exhaust Gases

  • Chung, Kyung-Yul;Song, Young-Hoon;Oh, Sang-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.657-665
    • /
    • 2003
  • Combined De-NOx Process in which $NH_3$ SCR (Selective Catalytic Reduction) and non-thermal Plasma Process are simultaneously used, has been investigated with a pilot test facility. The pilot test facility treats the combustion flue gases exhausted from a diesel engine that generates 240 kW of electrical power. Test results show that up to 80 % of NOx (NO and NO2) can be removed at 100 - $200^{\circ}C$. None of conventional De-NOx techniques works under such low temperature range. In addition to NOx. the Pilot test results show that soot can be simultaneously treated with the present non-thermal plasma technique. The present pilot test shows that the electrical power consumption to operate the non-thermal plasma reactor is equivalent to 3 - 4 % of the electrical power generated by the diesel engine.

NADPH Oxidase and the Cardiovascular Toxicity Associated with Smoking

  • Kim, Mikyung;Han, Chang-Ho;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.30 no.3
    • /
    • pp.149-157
    • /
    • 2014
  • Smoking is one of the most serious but preventable causes of cardiovascular disease (CVD). Key aspects of pathological process associated with smoking include endothelial dysfunction, a prothrombotic state, inflammation, altered lipid metabolism, and hypoxia. Multiple molecular events are involved in smoking-induced CVD. However, the dysregulations of reactive oxygen species (ROS) generation and metabolism mainly contribute to the development of diverse CVDs, and NADPH oxidase (NOX) has been established as a source of ROS responsible for the pathogenesis of CVD. NOX activation and resultant ROS production by cigarette smoke (CS) treatment have been widely observed in isolated blood vessels and cultured vascular cells, including endothelial and smooth muscle cells. NOX-mediated oxidative stress has also been demonstrated in animal studies. Of the various NOX isoforms, NOX2 has been reported to mediate ROS generation by CS, but other isoforms were not tested thoroughly. Of the many CS constituents, nicotine, methyl vinyl ketone, and ${\alpha}$,${\beta}$-unsaturated aldehydes, such as, acrolein and crotonaldehyde, appear to be primarily responsible for NOX-mediated cytotoxicity, but additional validation will be needed. Human epidemiological studies have reported relationships between polymorphisms in the CYBA gene encoding p22phox, a catalytic subunit of NOX and susceptibility to smoking-related CVDs. In particular, G allele carriers of A640G and $-930^{A/G}$ polymorphisms were found to be vulnerable to smoking-induced cardiovascular toxicity, but results for C242T studies are conflicting. On the whole, evidence implicates the etiological role of NOX in smoking-induced CVD, but the clinical relevance of NOX activation by smoking and its contribution to CVD require further validation in human studies. A detailed understanding of the role of NOX would be helpful to assess the risk of smoking to human health, to define high-risk subgroups, and to develop strategies to prevent or treat smoking-induced CVD.