• 제목/요약/키워드: Bdc

검색결과 64건 처리시간 0.023초

왕복동형 압축기 피스톤의 동적 거동 해석 (Dynamic Behavior Analysis of Reciprocating Compressor Pistons)

  • 김태종
    • 한국소음진동공학회논문집
    • /
    • 제12권9호
    • /
    • pp.717-724
    • /
    • 2002
  • In this study, a numerical analysis for the piston secondary dynamics of small refrigeration reciprocating compressors is performed. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic force and moment as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, length of the cylinder wall, and pin location on the stability of the piston.

루프소기형태의 2행정기관에서 분사압력 및 분사각도에 따른 분무특성 연구 (Effects of Injection Pressure and Injection Angle on Spray Characteristics in Loop Scavenged Type 2-stroke Engines)

  • 채수;유홍선
    • 한국자동차공학회논문집
    • /
    • 제4권1호
    • /
    • pp.165-176
    • /
    • 1996
  • The flow field and spray characteristics for loop scavenged type 2stroke engine having pancake shape was numerically computed using KIVA-Ⅱ code. The cylinder has 1intake port, 2side intake ports and 1exhaust port with induced flow angle 25 deg. In engine calculation, the chop techniques is used to strip or add planes of cells across the mesh adjacent to the TDC and the BDC(ports parts) for preventing the demand of exceed time during the computation, providing a control on cell height in the squish region. The modified turbulent model including the consideration of the compressibility effect due to the compression and expansion of piston was also used. The case of 25 deg.(injection angle) which is opposite to scavenging flow direction shows better the distribution of droplets and the evaporation rate of droplets compared to other cases(0 deg., - 25 deg.). When injection pressure was increased, the spray tip penetration became longer. When injection pressure was increased, the interaction between the upward gas velocity and spray droplets strongly cause. Thus the breakup of droplets is strongly occurred and the evaporation rate of droplets was found to be better.

  • PDF

ISG 시스템용 고효율 양방향 DC-DC 컨버터의 설계 및 자율적이며 끊김없는 모드전환을 위한 제어전략 (Design and Control Strategy for Autonomous and Seamless Mode Transition of High Efficiency Bidirectional DC-DC Converter for ISG Systems)

  • 박준성;권민호;최세완
    • 전력전자학회논문지
    • /
    • 제21권1호
    • /
    • pp.19-26
    • /
    • 2016
  • In this study, a bidirectional DC-DC converter for idle stop and go (ISG) is developed to reduce fuel consumption. A three-phase non-isolated half-bridge converter is selected through a design method by considering efficiency and volume. According to the state of charge of the batteries at both the low-voltage and high-voltage sides, buck mode, which charges a low-voltage battery from the generated motor energy, and boost mode, which provides power to the motor from the low- and high-voltage battery sides, are required in the ISG system. Hence, an autonomous and seamless bidirectional control method using a variable current limiter is proposed for mode change. A 1.8 kW engineering sample of the proposed converter has been built and tested to verify the validity of the proposed concept. The maximum efficiencies, including gate driver and control circuit losses, are 96.4% in charging mode and 96.1% in discharging mode.

농도성층화와 Cooled EGR이 DME HCCI 엔진의 운전영역에 미치는 영향에 관한 수치해석 (An Investigation of Effects of Fuel Stratification and Cooled EGR on DME HCCI Engine's Operating Ranges by Numerical Analysis)

  • 정동원;아마라;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제21권2호
    • /
    • pp.129-135
    • /
    • 2010
  • Homogeneous charge compression ignition (HCCI) engines have the potential to provide both diesel-like efficiency and very low emissions of nitrogen oxide (NOx) and particulate matter(PM). However, several technical issues still must be resolved before HCCI can see application. Among these, steep pressure-rise rate which leads to narrow operating range of HCCI engine continues to be a major issue. This work investigates the combination of two methods to mitigate the excessive pressure-rise rates at high power output, namely fuel stratification and Cooled exhaust-gas recirculation (Cooled EGR), after identifying the each effects to pressure-rise rate. When applying the fuel stratification to simulation, total fuelling width of 0.15 at BDC is set as a equivalent ratio difference based on the previous research. In order to simulate the effects of cooled EGR, $CO_2$ mole fraction in pre-mixture is changed ranging from 0 to 30%. DME which has a characteristic of two-stage ignition is used as a fuel.

대형 디젤 엔진의 연비 향상을 위한 Miller Cam 평가 (Evaluation on a Miller Cam for Improving the Fuel Consumption of a Large Diesel Engine)

  • 송창훈;왕태중;임희준
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.47-52
    • /
    • 2016
  • Miller timing is one of the promising ways which can improve the fuel consumption of internal combustion engines. Indeed, Miller timing employing an early intake valve close is widely applied to large diesel and gas engines to enhance performance and reduce NOx emissions. In this study, performance evaluation is carried out by 1-D cycle simulation in order to estimate the effect of Miller CAM timing before BDC for a 32 L turbocharged diesel engine. To optimize Miller CAM timing, a single stage turbocharger is matched with an early intake valve close since boost pressure is a significant parameter that can control compression work in a turbocharged engine. The engine simulation result shows that there is enough potential to improve fuel consumption rate and also reduce NOx emissions at the same time.Abstract here.

12V, 1000A 절연형 양방향 공진형 DC-DC 컨버터 개발 (Development of 12V, 1000A Isolated Bidirectional Resonant DC-DC Converter)

  • 박준성;최세완
    • 전력전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.57-63
    • /
    • 2014
  • In this paper a bidirectional DC-DC converter is proposed for renewable energy systems, eco-friendly vehicles, energy storage systems, uninterruptible power supply(UPS) systems and battery test equipments. The two-stage bidirectional converter employing a fixed-frequency series loaded resonant converter is designed to be capable of operating under zero-current-switching turn on and turn off regardless of voltage and load variation, and hence its magnetic components and EMI filters can be optimized. And efficiencies and volumes of the two-stage bidirectional converters are compared according to configuration of isolated and non-isolated parts and a two-stage topology suitable for low voltage and high current applications is proposed. A 12kW(12V, 1000A) prototype of the proposed converter has been built and tested to verify the validity of the proposed operation.

Solid State Transformer를 위한 양방향 Dual Active Bridge DC-DC 컨버터의 설계 기법 (Practical Design Methodology of Dual Active Bridge Converter as Isolated Bi-directional DC-DC Converter for Solid State Transformer)

  • 최현준;이원빈;정지훈
    • 전력전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.102-108
    • /
    • 2017
  • Proper design guides are proposed for a practical dual-active bridge (DAB) converter based on the mathematical model on the steady state. The DAB converter is popular in bidirectional application due to its zero-voltage capability and easy bidirectional operation for seamless control, high efficiency, and performance. Some design considerations are taken to overcome the limitation of the DAB converter. The practical design methodology of power stage is discussed to minimize the conduction and switching losses of the DAB converter. Small-signal model and frequency response are derived and analyzed based on the generalized average method, which considers equivalent series resistance, to improve the dynamics, stability, and reliability with voltage regulation of the practical DAB converter. The design of closed-loop control is discussed by the derived small-signal model to obtain the pertinent gain and phase margin in steady-state operation. Experimental results of a 3.3 kW prototype of DAB converter demonstrate the validity and effectiveness of the proposed methods.

피스톤의 점성 마찰력을 고려한 소형 왕복동 압축기의 동적 해석 (Dynamic Analysis of the Small Reciprocating Compressors Considering Viscous Frictional Force of a Piston)

  • 김태종
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.904-913
    • /
    • 2002
  • In this study, a dynamic analysis of the reciprocating compression mechanism considering viscous friction force of a piston used in small refrigeration compressors is performed. The length of cylinder in this class of compressors is shortening to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder liner is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the compression mechanism dynamics, the change in bearing length of the piston and all corresponding viscous forces and moments are considered in order to determine the trajectories of piston and crankshaft. The piston orbits for viscous friction model and Coulomb friction model were used to compare the effect of the friction forces of piston on the dynamic trajectories of piston. To investigate the effect of friction force acting on the piston for the dynamic characteristics of crankshaft, comparison of the crankshaft loci is given in both viscous model and Coulomb model. Results show that the viscous friction force of piston must be considered in calculating for the accurate dynamic characteristics of the reciprocating compression mechanism.

엔진 내구시험 시 실린더 보아의 마모에 관한 연구 (A Study on Cylinder Bore Wear during Engine Durability Test)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제22권3호
    • /
    • pp.131-136
    • /
    • 2006
  • Cylinder bore wear may not be a problem in most current automotive engines. However, a small change in cylinder bore diameter can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blow-by and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each pare0s wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of cylinder bore diameter are obtained from three engines before and after engine durability test. The calculated wear data of cylinder bore diameter are turn out to be twice of the lower bound of averaged test values at TDC and the lower bound at BDC.

Chemical composition of protein concentrate prepared from Yellowfin tuna Thunnus albacares roe by cook-dried process

  • Lee, Hyun Ji;Park, Sung Hwan;Yoon, In Seong;Lee, Gyoon-Woo;Kim, Yong Jung;Kim, Jin-Soo;Heu, Min Soo
    • Fisheries and Aquatic Sciences
    • /
    • 제19권3호
    • /
    • pp.12.1-12.8
    • /
    • 2016
  • Roe is the term used to describe fish eggs (oocytes) gathered in skeins and is one of the most valuable food products from fishery sources. Thus, means of processing are required to convert the underutilized yellowfin tuna roes (YTR) into more marketable and acceptable forms as protein concentrate. Roe protein concentrates (RPCs) were prepared by cooking condition (boil-dried concentrate, BDC and steam-dried concentrate, SDC, respectively) and un-cooking condition (freeze-dried concentrate, FDC) from yellowfin tuna roe. The yield of RPCs was in the range from 22.2 to 25.3 g/100 g of roe. RPCs contained protein (72.3-77.3 %), moisture (4.3-5.6 %), lipid (10.6-11.3 %) and ash (4.3-5.7 %) as the major constituents. The prominent amino acids of RPCs were aspartic acid, 8.7-9.2, glutamic acid, 13.1-13.2, and leucine, 8.5-8.6 g/100 g of protein. Major differences were not observed in each of the amino acid. K, S, Na, and P as minerals were the major elements in RPCs. No difference noted in sodium dodecyl sulfate polyacrylamide gel electrophoresis protein band (15-100 K) possibly representing partial hydrolysis of myosin. Therefore, RPCs from YTR could be use potential protein ingredient for human food and animal feeds.