• Title/Summary/Keyword: Bayesian validation method

Search Result 43, Processing Time 0.023 seconds

Cross-Validation of SPT-N Values in Pohang Ground Using Geostatistics and Surface Wave Multi-Channel Analysis (지구통계기법과 표면파 다중채널분석을 이용한 포항 지반의 SPT-N value 교차검증)

  • Kim, Kyung-Oh;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.393-405
    • /
    • 2020
  • Various geotechnical information is required to evaluate the stability of the ground and a foundation once liquefaction occurs due to earthquakes, such as the soil strength and groundwater level. The results of the Standard Penetration Test (SPT) conducted in Korea are registered in the National Geotechnical Information Portal System. If geotechnical information for a non-drilled area is needed, geostatistics can be applied. This paper is about the feasibility of obtaining ground information by the Empirical Bayesian Kriging (EBK) method and the Inverse Distance Weighting Method (IDWM). Esri's ArcGIS Pro program was used to estimate these techniques. The soil strength parameter of the drilling area and the level of groundwater obtained from the standard penetration test were cross-validated with the results of the analysis technique. In addition, Multichannel Analysis of Surface Waves (MASW) was conducted to verify the techniques used in the analysis. The Buk-gu area of Pohang was divided into 1.0 km×1.0 km and 110 zones. The cross-validation for the SPT N value and groundwater level through EBK and IDWM showed that both techniques were suitable. MASW presented an approximate section area, making it difficult to clearly grasp the distribution pattern and groundwater level of the SPT N value.

Dynamic Bayesian Network based Two-Hand Gesture Recognition (동적 베이스망 기반의 양손 제스처 인식)

  • Suk, Heung-Il;Sin, Bong-Kee
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.4
    • /
    • pp.265-279
    • /
    • 2008
  • The idea of using hand gestures for human-computer interaction is not new and has been studied intensively during the last dorado with a significant amount of qualitative progress that, however, has been short of our expectations. This paper describes a dynamic Bayesian network or DBN based approach to both two-hand gestures and one-hand gestures. Unlike wired glove-based approaches, the success of camera-based methods depends greatly on the image processing and feature extraction results. So the proposed method of DBN-based inference is preceded by fail-safe steps of skin extraction and modeling, and motion tracking. Then a new gesture recognition model for a set of both one-hand and two-hand gestures is proposed based on the dynamic Bayesian network framework which makes it easy to represent the relationship among features and incorporate new information to a model. In an experiment with ten isolated gestures, we obtained the recognition rate upwards of 99.59% with cross validation. The proposed model and the related approach are believed to have a strong potential for successful applications to other related problems such as sign languages.

The Study on the Extraction of the Distribution Potential Area of Debris Landform Using Fuzzy Set and Bayesian Predictive Discriminate Model (퍼지집합과 베이지안 확률 기법을 이용한 암설사면지형 분포지역 추출에 관한 연구)

  • Wi, Nun-Sol;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.3
    • /
    • pp.105-118
    • /
    • 2017
  • The debris slope landforms which are existent in Korean mountains is generally on the steep slopes and mostly covered by vegetation, it is difficult to investigate the landform. Therefore a scientific method is required to come up with an effective field investigation plan. For this purpose, the use of Remote Sensing and GIS technologies for a spatial analysis is essential. This study has extracted the potential area of debrisslope landform formation using Fuzzy set and Bayesian Predictive Discriminate Model as mathematical data integration methods. The first step was to obtain information about debris locations and their related factors. This information was verified through field investigation and then used to build a database. In the second step, the map that zoning the study area based on the degree of debris formation possibility was generated using two modeling methods, and then cross validation technique was applied. In order to quantitatively analyze the accuracy of two modeling methods, the calculated potential rate of debrisformation within the study area was evaluated by plotting SRC(Success Rate Curve) and calculating AUC(Area Under the Curve). As a result, the prediction accuracy of Fuzzy set model wes 83.1% and Bayesian Predictive Discriminate Model wes 84.9%. It showed that two models are accurate and reliable and can contribute to efficient field investigation and debris landform management.

A Fast Bayesian Detection of Change Points Long-Memory Processes (장기억 과정에서 빠른 베이지안 변화점검출)

  • Kim, Joo-Won;Cho, Sin-Sup;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.735-744
    • /
    • 2009
  • In this paper, we introduce a fast approach for Bayesian detection of change points in long-memory processes. Since a heavy computation is needed to evaluate the likelihood function of long-memory processes, a method for simplifying the computational process is required to efficiently implement a Bayesian inference. Instead of estimating the parameter, we consider selecting a element from the set of possible parameters obtained by categorizing the parameter space. This approach simplifies the detection algorithm and reduces the computational time to detect change points. Since the parameter space is (0, 0.5), there is no big difference between the result of parameter estimation and selection under a proper fractionation of the parameter space. The analysis of Nile river data showed the validation of the proposed method.

Penalized rank regression estimator with the smoothly clipped absolute deviation function

  • Park, Jong-Tae;Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.673-683
    • /
    • 2017
  • The least absolute shrinkage and selection operator (LASSO) has been a popular regression estimator with simultaneous variable selection. However, LASSO does not have the oracle property and its robust version is needed in the case of heavy-tailed errors or serious outliers. We propose a robust penalized regression estimator which provide a simultaneous variable selection and estimator. It is based on the rank regression and the non-convex penalty function, the smoothly clipped absolute deviation (SCAD) function which has the oracle property. The proposed method combines the robustness of the rank regression and the oracle property of the SCAD penalty. We develop an efficient algorithm to compute the proposed estimator that includes a SCAD estimate based on the local linear approximation and the tuning parameter of the penalty function. Our estimate can be obtained by the least absolute deviation method. We used an optimal tuning parameter based on the Bayesian information criterion and the cross validation method. Numerical simulation shows that the proposed estimator is robust and effective to analyze contaminated data.

Junk-Mail Filtering by Mail Address Validation and Title-Content Weighting (메일 주소 유효성과 제목-내용 가중치 기법에 의한 스팸 메일 필터링)

  • Kang Seung-Shik
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.255-263
    • /
    • 2006
  • It is common that a junk mail has an inconsistency of mail addresses between those of the mail headers and the mail recipients. In addition, users easily know that an email is a junk or legitimate mail only by looking for the title of the email. In this paper, we tried to apply the filtering classifiers of mail address validation check and the combination method of title-content weighting to improve the performance of junk mail filtering system. In order to verify the effectiveness of the proposed method, we performed an experiment by applying them to Naive Bayesian classifier. The experiment includes the unit testing and the combination of the filtering techniques. As a result, we found that our method improved 11.6% of recall and 2.1% of precision that it contributed the enhancement of the junk mail filtering system.

  • PDF

A genome-wide association study on growth traits of Korean commercial pig breeds using Bayesian methods

  • Jong Hyun Jung;Sang Min Lee;Sang-Hyon Oh
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.807-816
    • /
    • 2024
  • Objective: This study aims to identify the significant regions and candidate genes of growth-related traits (adjusted backfat thickness [ABF], average daily gain [ADG], and days to 90 kg [DAYS90]) in Korean commercial GGP pig (Duroc, Landrace, and Yorkshire) populations. Methods: A genome-wide association study (GWAS) was performed using single-nucleotide polymorphism (SNP) markers for imputation to Illumina PorcineSNP60. The BayesB method was applied to calculate thresholds for the significance of SNP markers. The identified windows were considered significant if they explained ≥1% genetic variance. Results: A total of 28 window regions were related to genetic growth effects. Bayesian GWAS revealed 28 significant genetic regions including 52 informative SNPs associated with growth traits (ABF, ADG, DAYS90) in Duroc, Landrace, and Yorkshire pigs, with genetic variance ranging from 1.00% to 5.46%. Additionally, 14 candidate genes with previous functional validation were identified for these traits. Conclusion: The identified SNPs within these regions hold potential value for future marker-assisted or genomic selection in pig breeding programs. Consequently, they contribute to an improved understanding of genetic architecture and our ability to genetically enhance pigs. SNPs within the identified regions could prove valuable for future marker-assisted or genomic selection in pig breeding programs.

A Novel Method for Emotion Recognition based on the EEG Signal using Gradients (EEG 신호 기반 경사도 방법을 통한 감정인식에 대한 연구)

  • Han, EuiHwan;Cha, HyungTai
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.71-78
    • /
    • 2017
  • There are several algorithms to classify emotion, such as Support-vector-machine (SVM), Bayesian decision rule, etc. However, many researchers have insisted that these methods have minor problems. Therefore, in this paper, we propose a novel method for emotion recognition based on Electroencephalogram (EEG) signal using the Gradient method which was proposed by Han. We also utilize a database for emotion analysis using physiological signals (DEAP) to obtain objective data. And we acquire four channel brainwaves, including Fz (${\alpha}$), Fp2 (${\beta}$), F3 (${\alpha}$), F4 (${\alpha}$) which are selected in previous study. We use 4 features which are power spectral density (PSD) of the above channels. According to performance evaluation (4-fold cross validation), we could get 85% accuracy in valence axis and 87.5% in arousal. It is 5-7% higher than existing method's.

Classification of Very High Concerns HRCT Images using Extended Bayesian Networks (확장 베이지안망을 적용한 고위험성 HRCT 영상 분류)

  • Lim, Chae-Gyun;Jung, Yong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.7-12
    • /
    • 2012
  • Recently the medical field to efficiently process the vast amounts of information to decision trees, neural networks, Bayesian Networks, including the application method of various data mining techniques are investigated. In addition, the basic personal information or patient history, family history, in addition to information such as MRI, HRCT images and additional information to collect and leverage in the diagnosis of disease, improved diagnostic accuracy is to promote a common status. But in real world situations that affect the results much because of the variable exists for a particular data mining techniques to obtain information through the enemy can be seen fairly limited. Medical images were taken as well as a minor can not give a positive impact on the diagnosis, but the proportion increased subjective judgments by the automated system is to deal with difficult issues. As a result of a complex reality, the situation is more advantageous to deal with the relative probability of the multivariate model based on Bayesian network, or TAN in the K2 search algorithm improves due to expansion model has been proposed. At this point, depending on the type of search algorithm applied significantly influenced the performance characteristics of the extended Bayesian network, the performance and suitability of each technique for evaluation of the facts is required. In this paper, we extend the Bayesian network for diagnosis of diseases using the same data were carried out, K2, TAN and changes in search algorithms such as classification accuracy was measured. In the 10-fold cross-validation experiment was performed to compare the performance evaluation based on the analysis and the onset of high-risk classification for patients with HRCT images could be possible to identify high-risk data.

Fatigue life prediction based on Bayesian approach to incorporate field data into probability model

  • An, Dawn;Choi, Joo-Ho;Kim, Nam H.;Pattabhiraman, Sriram
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.427-442
    • /
    • 2011
  • In fatigue life design of mechanical components, uncertainties arising from materials and manufacturing processes should be taken into account for ensuring reliability. A common practice is to apply a safety factor in conjunction with a physics model for evaluating the lifecycle, which most likely relies on the designer's experience. Due to conservative design, predictions are often in disagreement with field observations, which makes it difficult to schedule maintenance. In this paper, the Bayesian technique, which incorporates the field failure data into prior knowledge, is used to obtain a more dependable prediction of fatigue life. The effects of prior knowledge, noise in data, and bias in measurements on the distribution of fatigue life are discussed in detail. By assuming a distribution type of fatigue life, its parameters are identified first, followed by estimating the distribution of fatigue life, which represents the degree of belief of the fatigue life conditional to the observed data. As more data are provided, the values will be updated to reduce the credible interval. The results can be used in various needs such as a risk analysis, reliability based design optimization, maintenance scheduling, or validation of reliability analysis codes. In order to obtain the posterior distribution, the Markov Chain Monte Carlo technique is employed, which is a modern statistical computational method which effectively draws the samples of the given distribution. Field data of turbine components are exploited to illustrate our approach, which counts as a regular inspection of the number of failed blades in a turbine disk.