• 제목/요약/키워드: Bayesian neural network

검색결과 135건 처리시간 0.027초

역전파 학습 알고리즘을 이용한 콘크리트와 부착된 FRP 판의 부착강도 모델 개발 (Development of Bond Strength Model for FRP Plates Using Back-Propagation Algorithm)

  • 박도경
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권2호
    • /
    • pp.133-144
    • /
    • 2006
  • FRP 판은 외부 부착된 보강 판의 효과적인 부착강도의 증진으로 실질적으로 부착강도에 대한 많은 연구가 수행되어왔다. 선행연구자들은 이러한 부착강도를 알아보기 위하여 다양한 변수를 설정하여 실험을 통하여 FRP 판의 부착강도를 규명하였다. 그러나, 이러한 부착강도를 알아보기 위한 실험은 장비구축의 비용과 시간 소비가 많이 되고 수행하기 어렵기 때문에 국한적으로 수행되고 있다. 본 연구는 선행연구자들의 부착실험 데이터를 다양한 신경망 모형과 알고리즘을 적용하여 최적의 인공신경망 모형을 개발하는데 그 목적이 있다. 인공신경망 모형의 출력층은 부착강도, 입력층은 FRP 판의 두께, 폭, 부착 길이, 탄성계수, 인장강도와 콘크리트의 압축강도, 인장강도, 폭을 변수로 선정하여 학습을 수행하였다. 개발된 인공신경망 모형은 역전파 학습 알고리즘을 적용하였으며, 오차는 0.001범위에 수렴되도록 학습을 하였다. 또한, 일반화 과정은 Bayesian 기법을 도입함으로써 보다 일반화된 방법으로 과대적합의 문제를 해소하였다. 개발된 모형의 검증은 학습에 이용되지 않은 다른 선행연구자들의 부착강도 결과 값과 비교함으로서 실시하였다.

인공신경망 이론을 이용한 단기 홍수량 예측 (Short-term Flood Forecasting Using Artificial Neural Networks)

  • 강문성;박승우
    • 한국농공학회지
    • /
    • 제45권2호
    • /
    • pp.45-57
    • /
    • 2003
  • An artificial neural network model was developed to analyze and forecast Short-term river runoff from the Naju watershed, in Korea. Error back propagation neural networks (EBPN) of hourly rainfall and runoff data were found to have a high performance In forecasting runoff. The number of hidden nodes were optimized using total error and Bayesian information criterion. Model forecasts are very accurate (i.e., relative error is less than 3% and $R^2$is greater than 0.99) for calibration and verification data sets. Increasing the time horizon for application data sets, thus mating the model suitable for flood forecasting. decreases the accuracy of the model. The resulting optimal EBPN models for forecasting hourly runoff consists of ten rainfall and four runoff data(ANN0410 model) and ten rainfall and ten runoff data(ANN1010 model). Performances of the ANN0410 and ANN1010 models remain satisfactory up to 6 hours (i.e., $R^2$is greater than 0.92).

티타늄 합금의 변형률속도 및 온도를 고려한 인공신경망 기반 경화모델 성능평가 (Evaluation of Performance of Artificial Neural Network based Hardening Model for Titanium Alloy Considering Strain Rate and Temperature)

  • 김민기;임성식;김용배
    • 소성∙가공
    • /
    • 제33권2호
    • /
    • pp.96-102
    • /
    • 2024
  • This study addresses evaluation of performance of hardening model for a titanium alloy (Ti6Al4V) based on the artificial neural network (ANN) regarding the strain rate and the temperature. Uniaxial compression tests were carried out at different strain rates from 0.001 /s to 10 /s and temperatures from 575 ℃ To 975 ℃. Using the experimental data, ANN models were trained and tested with different hyperparameters, such as size of hidden layer and optimizer. The input features were determined with the equivalent plastic strain, strain rate, and temperature while the output value was set to the equivalent stress. When the number of data is sufficient with a smooth tendency, both the Bayesian regulation (BR) and the Levenberg-Marquardt (LM) show good performance to predict the flow behavior. However, only BR algorithm shows a predictability when the number of data is insufficient. Furthermore, a proper size of the hidden layer must be confirmed to describe the behavior with the limited number of the data.

다층 퍼셉트론과 마코프 랜덤 필드 모델을 이용한 베이지안 결 분할 (Bayesian Texture Segmentation Using Multi-layer Perceptron and Markov Random Field Model)

  • 김태형;엄일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제44권1호
    • /
    • pp.40-48
    • /
    • 2007
  • 이 논문은 다중 스케일 베이지안 관점에서 다층 퍼셉트론과 마코프 랜덤 필드를 사용한 새로운 결 분할 방법을 제안한다. 다층 퍼셉트론의 출력은 사후 확률을 모델링하므로 본 논문에서는 다중 스케일 웨이블릿 계수들을 다층 퍼셉트론의 입력으로 사용한다. 다층 퍼셉트론으로부터 구한 사후 확률과 MAP (maximum a posterior) 분류를 이용하여 각 스케일에서 결 분류를 수행한다. 또한 가장 섬세한 스케일에서 더 개선된 분할 결과를 얻기 위하여 모든 스케일에서 MAP 분류 결과들을 거친 스케일에서 섬세한 스케일까지 차례로 융합한다. 이런 과정은 한 스케일에서의 분류 정보와 그 인접한 보다 거친 스케일에서 얻어지는 문맥과 관련한 연역적 정보를 이용하여 MAP 분류를 행함으로써 이루어진다. 이 융합 과정에서, MRF (Markov random fields) 사전 모델이 평탄화 제한자로서 동작하고, 깁스 샘플러 (Gibbs sampler)는 MAP 분류기로서 동작한다. 제안한 분할 방법은 HMT (Hidden Markov Trees) 모델과 HMTseg 알고리즘을 이용한 결 분할 방법보다 더 좋은 성능을 보인다.

Pullout capacity of small ground anchors: a relevance vector machine approach

  • Samui, Pijush;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • 제1권3호
    • /
    • pp.259-262
    • /
    • 2009
  • This paper examines the potential of relevance vector machine (RVM) in prediction of pullout capacity of small ground anchors. RVM is based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. The results are compared with a widely used artificial neural network (ANN) model. Overall, the RVM showed good performance and is proven to be better than ANN model. It also estimates the prediction variance. The plausibility of RVM technique is shown by its superior performance in forecasting pullout capacity of small ground anchors providing exogenous knowledge.

딥러닝 기반의 얼굴인증 시스템 설계 및 구현 (Design and Implementation of a Face Authentication System)

  • 이승익
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제16권2호
    • /
    • pp.63-68
    • /
    • 2020
  • 본 논문에서는 딥러닝 프레임워크 기반의 얼굴인증 시스템에 대하여 제안한다. 제안 시스템은 딥러닝 알고리즘을 활용하여 얼굴영역 검출과 얼굴 특징 추출을 수행하고, 결합베이시안 학습 모델을 이용하여 얼굴인증을 수행한다. 제안 얼굴인증 알고리즘에 대한 성능 평가는 다양한 얼굴 사진들로 구성된 데이터베이스를 이용하여 수행하였으며, 한 명에 대한 얼굴 영상은 2장으로 구성하였다. 또한 얼굴인증 실험은 딥 뉴럴 네트워크를 통한 2048차원의 특징과 그 유사성을 측정하기 위해 결합베이시안 알고리즘을 적용하였으며, 얼굴인증에 실패한 동일오율을 계산함으로써 성능평가를 수행하였다. 실험 결과, 딥러닝 특징과 결합베이시안 알고리즘을 사용한 제안 방법은 1.2%의 동일오율을 보였다.

확장 베이지안망을 적용한 고위험성 HRCT 영상 분류 (Classification of Very High Concerns HRCT Images using Extended Bayesian Networks)

  • 임채균;정용규
    • 전자공학회논문지CI
    • /
    • 제49권2호
    • /
    • pp.7-12
    • /
    • 2012
  • 최근 의료분야에서는 방대한 양의 정보를 효과적으로 처리하기 위하여 의사결정트리, 신경망, 베이지안망 등을 비롯한 각종 데이터마이닝 기법의 적용 방안을 연구하고 있다. 또한 환자의 기본적인 신상정보나 과거력, 가족력과 같은 정보 이외에도 MRI, HRCT 등의 영상정보를 추가적으로 수집하고 진단에 활용함으로써 질병진단의 정확도 향상을 도모하는 것이 일반적인 현황이다. 하지만 실제 상황에서는 결과에 영향을 미치는 다량의 변수가 존재하므로 특정 데이터마이닝 기법을 통하여 얻을 수 있는 정보가 상당히 제한적이라고 볼 수 있다. 그뿐만 아니라 촬영된 의료영상도 부수적으로 진단에 긍정적인 영향을 줄 수는 있지만, 주관적인 판단 비중이 높아 자동화된 시스템으로 처리하기가 난해한 문제이다. 이에 따라 현실의 복잡한 상황에서 상대적으로 대처가 유리하고 다변량 확률적인 모델을 기반으로 하는 베이지안망에서 K2나 TAN 등으로 탐색 알고리즘을 개선한 확장 모델이 제안되었다. 이 때, 적용되는 탐색 알고리즘의 종류에 따라 그 성능이 크게 좌우되는 확장 베이지안망의 특성상, 각 기법에 대한 성능과 적합성의 사실적인 평가가 요구된다. 따라서 본 논문에서는 확장 베이지안망에서 질병 진단에 대한 동일한 데이터를 이용하여 실험을 수행하였으며, K2, TAN과 같은 탐색 알고리즘에 변화를 주며 분류 정확도를 측정하였다. 실험에서는 10-fold 교차검증을 수행한 결과분석을 기반으로 성능을 비교평가하고, 발병 위험성이 높은 환자에 대한 HRCT 영상을 분류하여 고위험성의 데이터를 식별 가능하도록 하였다.

자동 기계학습(AutoML) 기술 동향 (Recent Research & Development Trends in Automated Machine Learning)

  • 문용혁;신익희;이용주;민옥기
    • 전자통신동향분석
    • /
    • 제34권4호
    • /
    • pp.32-42
    • /
    • 2019
  • The performance of machine learning algorithms significantly depends on how a configuration of hyperparameters is identified and how a neural network architecture is designed. However, this requires expert knowledge of relevant task domains and a prohibitive computation time. To optimize these two processes using minimal effort, many studies have investigated automated machine learning in recent years. This paper reviews the conventional random, grid, and Bayesian methods for hyperparameter optimization (HPO) and addresses its recent approaches, which speeds up the identification of the best set of hyperparameters. We further investigate existing neural architecture search (NAS) techniques based on evolutionary algorithms, reinforcement learning, and gradient derivatives and analyze their theoretical characteristics and performance results. Moreover, future research directions and challenges in HPO and NAS are described.

An integrated method of flammable cloud size prediction for offshore platforms

  • Zhang, Bin;Zhang, Jinnan;Yu, Jiahang;Wang, Boqiao;Li, Zhuoran;Xia, Yuanchen;Chen, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.321-339
    • /
    • 2021
  • Response Surface Method (RSM) has been widely used for flammable cloud size prediction as it can reduce computational intensity for further Explosion Risk Analysis (ERA) especially during the early design phase of offshore platforms. However, RSM encounters the overfitting problem under very limited simulations. In order to overcome the disadvantage of RSM, Bayesian Regularization Artificial Neural (BRANN)-based model has been recently developed and its robustness and efficiency have been widely verified. However, for ERA during the early design phase, there seems to be room to further reduce the computational intensity while ensuring the model's acceptable accuracy. This study aims to develop an integrated method, namely the combination of Center Composite Design (CCD) method with Bayesian Regularization Artificial Neural Network (BRANN), for flammable cloud size prediction. A case study with constant and transient leakages is conducted to illustrate the feasibility and advantage of this hybrid method. Additionally, the performance of CCD-BRANN is compared with that of RSM. It is concluded that the newly developed hybrid method is more robust and computational efficient for ERAs during early design phase.

Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion

  • Tang, Wen;Wu, Rih-Teng;Jahanshahi, Mohammad R.
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.221-235
    • /
    • 2022
  • Manual inspection of steel box girders on long span bridges is time-consuming and labor-intensive. The quality of inspection relies on the subjective judgements of the inspectors. This study proposes an automated approach to detect and segment cracks in high-resolution images. An end-to-end cascaded framework is proposed to first detect the existence of cracks using a deep convolutional neural network (CNN) and then segment the crack using a modified U-Net encoder-decoder architecture. A Naïve Bayes data fusion scheme is proposed to reduce the false positives and false negatives effectively. To generate the binary crack mask, first, the original images are divided into 448 × 448 overlapping image patches where these image patches are classified as cracks versus non-cracks using a deep CNN. Next, a modified U-Net is trained from scratch using only the crack patches for segmentation. A customized loss function that consists of binary cross entropy loss and the Dice loss is introduced to enhance the segmentation performance. Additionally, a Naïve Bayes fusion strategy is employed to integrate the crack score maps from different overlapping crack patches and to decide whether a pixel is crack or not. Comprehensive experiments have demonstrated that the proposed approach achieves an 81.71% mean intersection over union (mIoU) score across 5 different training/test splits, which is 7.29% higher than the baseline reference implemented with the original U-Net.