• Title/Summary/Keyword: Bayesian network

Search Result 516, Processing Time 0.024 seconds

Large-Scale Bayesian Genetic Network Learning for Pharmacogenomics (Pharmacogenomics를 위한 대규모 베이지안 유전자망 학습)

  • 황규백;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.139-141
    • /
    • 2001
  • Pharmacogenomics는 개인의 유전적 성향과 약물에 대한 반응간의 관계에 대해 연구하는 학문이다. 이를 위해 DNA microarray 데이터를 비롯한 대량의 생물학 데이터가 구축되고 있으며 이러한 대규모 데이터를 분석하기 위해서 기계학습과 데이터 마이닝의 여러 기법들이 이용되고 있다. 본 논문에서는 pharmacogenomics를 위한 생물학 데이터의 효율적인 분석 수단으로 베이지안망(Bayesian network)을 제시한다. 배이지안망은 다수의 변수들간의 확률적 관계를 표현하는 확률그래프모델(probabilistic graphical model)로 유전자 발현과 약물 반응 사이의 확률적 의존 관계를 분석하는데 적합하다. NC160 cell lines dataset으로부터 학습된 베이지안 유전자망(Bayesian genetic network)이 나타내는 관계는 생물학적 실험을 통해 검증된 실제 관계들을 다수 포함하며, 이는 배이지안 유전자망 분석을 통해 개략적인 유전자-유전자, 약물-약물, 유전자-약물 관계를 효율적으로 파악할 수 있음을 나타낸다.

  • PDF

A Bayesian network based framework to evaluate reliability in wind turbines

  • Ashrafi, Maryam;Davoudpour, Hamid;Khodakarami, Vahid
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.543-553
    • /
    • 2016
  • The growing complexity of modern technological systems requires more flexible and powerful reliability analysis tools. Existing tools encounter a number of limitations including lack of modeling power to address components interactions for complex systems and lack of flexibility in handling component failure distribution. We propose a reliability modeling framework based on the Bayesian network (BN). It can combine historical data with expert judgment to treat data scarcity. The proposed methodology is applied to wind turbines reliability analysis. The observed result shows that a BN based reliability modeling is a powerful potential solution to modeling and analyzing various kinds of system components behaviors and interactions. Moreover, BN provides performing several inference approaches such as smoothing, filtering, what-if analysis, and sensitivity analysis for considering system.

Hierarchical Bayesian Network Learning for Large-scale Data Analysis (대규모 데이터 분석을 위한 계층적 베이지안망 학습)

  • Hwang Kyu-Baek;Kim Byoung-Hee;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.724-726
    • /
    • 2005
  • 베이지안망(Bayesian network)은 다수의 변수들 사이의 확률적 관계(조건부독립성: conditional independence)를 그래프 구조로 표현하는 모델이다. 이러한 베이지안망은 비감독학습(unsupervised teaming)을 통한 데이터마이닝에 적합하다. 이를 위해 데이터로부터 베이지안망의 구조와 파라미터를 학습하게 된다. 주어진 데이터의 likelihood를 최대로 하는 베이지안망 구조를 찾는 문제는 NP-hard임이 알려져 있으므로, greedy search를 통한 근사해(approximate solution)를 구하는 방법이 주로 이용된다. 하지만 이러한 근사적 학습방법들도 데이터를 구성하는 변수들이 수천 - 수만에 이르는 경우, 방대한 계산량으로 인해 그 적용이 실질적으로 불가능하게 된다. 본 논문에서는 그러한 대규모 데이터에서 학습될 수 있는 계층적 베이지안망(hierarchical Bayesian network) 모델 및 그 학습방법을 제안하고, 그 가능성을 실험을 통해 보인다.

  • PDF

Analysis of Questionnaire Investigation on SNS Utilizing Bayesian Network

  • Aburai, Tsuyoshi;Higuchi, Yuki;Takeyasu, Kazuhiro
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.2
    • /
    • pp.130-142
    • /
    • 2013
  • Social Networking Service (SNS) is prevailing rapidly in Japan in recent years. The most popular ones are Facebook, mixi, and Twitter, which are utilized in various fields of life together with the convenient tool such as smart-phone. In this work, a questionnaire investigation is carried out in order to clarify the current usage condition, issues and desired functions. More than 1,000 samples are gathered. Bayesian network is utilized for this analysis. After conducting the sensitivity analysis, useful results are obtained. Differences in usage objectives and SNS sites are made clear by the attributes and preference of SNS users. They can be utilized effectively for marketing by clarifying the target customer through the sensitivity analysis.

Performance Improvement in Distant-Talking Speech Recognition by an Integration of N-best results using Naive Bayesian Network (다채널 마이크 환경에서 Naive Bayesian Network의 Decision에 의한 음성인식 성능향상)

  • Ji, Mi-kyong;Kim, Hoi-Rin
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.151-154
    • /
    • 2005
  • 원거리 음성인식에서 인식률의 성능향상을 위해 필수적인 다채널 마이크 환경에서 방 안의 도처에 분산되어있는 원거리 마이크를 사용하여 TV, 조명 등의 주변 환경을 음성으로 제어하고자 한다. 이를 위해 각 채널의 인식결과를 통합하여 최적의 결과를 얻고자 채널의N-best 결과와 N-best 결과에 포함된 hypothesis의 frame-normalized likelihood 값을 사용하여 Bayesian network을 훈련하고 인식결과를 통합하여 최선의 결과를 decision 하는데 사용함으로써 원거리 음성인식의 성능을 향상시키고 또한 hands-free 응용을 현실화하기위한 방향을 제시한다.

  • PDF

Dynamic reliability analysis framework using fault tree and dynamic Bayesian network: A case study of NPP

  • Mamdikar, Mohan Rao;Kumar, Vinay;Singh, Pooja
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1213-1220
    • /
    • 2022
  • The Emergency Diesel Generator (EDG) is a critical and essential part of the Nuclear Power Plant (NPP). Due to past catastrophic disasters, critical systems of NPP like EDG are designed to meet high dependability requirements. Therefore, we propose a framework for the dynamic reliability assessment using the Fault Tree and the Dynamic Bayesian Network. In this framework, the information of the component's failure probability is updated based on observed data. The framework is powerful to perform qualitative as well as quantitative analysis of the system. The validity of the framework is done by applying it on several NPP systems.

Understanding Relationships Among Risk Factors in Container Port Operation UsingBayesian Network

  • Tsenskhuu Nyamjav;Min-Ho Ha
    • Journal of Navigation and Port Research
    • /
    • v.47 no.2
    • /
    • pp.93-99
    • /
    • 2023
  • This study aimed to determine relationships among risk factors influencing container port operation using Bayesian network. Risk factors identified from prior studies were classified into five groups: human error, machinery error, environmental risk, security risk, and natural disasters. P anel experts discussed identified risk factors to fulfil conditional probability tables of the interdependence model. The interdependence model was also validated by sensitivity analysis and provided an interrelation of factors influencing the direction of each other. Results of the interdependence model were partially in line with results from prior studies while practices in the global port industry confirmed interrelationships of risk factors. In addition, the relationship between top-ranked risk factors can provide a schematic drawing of the model. Accordingly, results of this study can expand the prior research in the Korean port industry, which may help port authorities improve risk management and reduce losses from the risk.

Development and Application of a Performance Prediction Model for Home Care Nursing Based on a Balanced Scorecard using the Bayesian Belief Network (Bayesian Belief Network 활용한 균형성과표 기반 가정간호사업 성과예측모델 구축 및 적용)

  • Noh, Wonjung;Seomun, GyeongAe
    • Journal of Korean Academy of Nursing
    • /
    • v.45 no.3
    • /
    • pp.429-438
    • /
    • 2015
  • Purpose: This study was conducted to develop key performance indicators (KPIs) for home care nursing (HCN) based on a balanced scorecard, and to construct a performance prediction model of strategic objectives using the Bayesian Belief Network (BBN). Methods: This methodological study included four steps: establishment of KPIs, performance prediction modeling, development of a performance prediction model using BBN, and simulation of a suggested nursing management strategy. An HCN expert group and a staff group participated. The content validity index was analyzed using STATA 13.0, and BBN was analyzed using HUGIN 8.0. Results: We generated a list of KPIs composed of 4 perspectives, 10 strategic objectives, and 31 KPIs. In the validity test of the performance prediction model, the factor with the greatest variance for increasing profit was maximum cost reduction of HCN services. The factor with the smallest variance for increasing profit was a minimum image improvement for HCN. During sensitivity analysis, the probability of the expert group did not affect the sensitivity. Furthermore, simulation of a 10% image improvement predicted the most effective way to increase profit. Conclusion: KPIs of HCN can estimate financial and non-financial performance. The performance prediction model for HCN will be useful to improve performance.

Implementation of Crime Prediction Algorithm based on Crime Influential Factors (범죄발생 요인 분석 기반 범죄예측 알고리즘 구현)

  • Park, Ji Ho;Cha, Gyeong Hyeon;Kim, Kyung Ho;Lee, Dong Chang;Son, Ki Jun;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.40-45
    • /
    • 2015
  • In this paper, we proposed and implemented a crime prediction algorithm based upon crime influential factors. To collect the crime-related big data, we used a data which had been collected and was published in the supreme prosecutors' office. The algorithm analyzed various crime patterns in Seoul from 2011 to 2013 using the spatial statistics analysis. Also, for the crime prediction algorithm, we adopted a Bayesian network. The Bayesian network consist of various spatial, populational and social characteristics. In addition, for the more precise prediction, we also considered date, time, and weather factors. As the result of the proposed algorithm, we could figure out the different crime patterns in Seoul, and confirmed the prediction accuracy of the proposed algorithm.

Bayesian Network Model for Human Fatigue Recognition (피로 인식을 위한 베이지안 네트워크 모델)

  • Lee Young-sik;Park Ho-sik;Bae Cheol-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.887-898
    • /
    • 2005
  • In this paper, we introduce a probabilistic model based on Bayesian networks BNs) for recognizing human fatigue. First of all, we measured face feature information such as eyelid movement, gaze, head movement, and facial expression by IR illumination. But, an individual face feature information does not provide enough information to determine human fatigue. Therefore in this paper, a Bayesian network model was constructed to fuse as many as possible fatigue cause parameters and face feature information for probabilistic inferring human fatigue. The MSBNX simulation result ending a 0.95 BN fatigue index threshold. As a result of the experiment, when comparisons are inferred BN fatigue index and the TOVA response time, there is a mutual correlation and from this information we can conclude that this method is very effective at recognizing a human fatigue.