• 제목/요약/키워드: Bayesian network

검색결과 516건 처리시간 0.026초

IoT 환경에서의 베이지안 네트워크를 이용한 추천시스템 (Recommendation System using Baysian Network in IoT Environment)

  • 정수연;김영국
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제54차 하계학술대회논문집 24권2호
    • /
    • pp.125-127
    • /
    • 2016
  • 본 논문에서는 IoT(Internet of Things) Device와 스마트폰을 이용하여 사용자의 상황을 인지하고 상황에 적합한 상품을 추천하는 추천시스템을 제안한다. 기존 추천시스템과 다르게 제안하는 IoT 환경에서의 추천시스템은 IoT Device와 스마트폰에서 얻을 수 있는 날씨, 위치, 사용자 정보 등을 파악하여 추천하는 것으로 다양하고 많은 데이터를 제공하므로 정확도를 높일 수 있다. 베이지안 네트워크(BN, Bayesian Network)는 불확실성을 효율적으로 관리하고 정확도와 실시간성을 높일 수 있는 방법으로, 상품의 특징에 따라 종류를 분류하여 추론하고 선호도가 높은 상품의 종류를 추천하는 시스템을 제안한다.

  • PDF

Reducing Feedback Overhead in Opportunistic Scheduling of Wireless Networks Exploiting Overhearing

  • Baek, Seung-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권2호
    • /
    • pp.593-609
    • /
    • 2012
  • We propose a scheme to reduce the overhead associated with channel state information (CSI) feedback required for opportunistic scheduling in wireless access networks. We study the case where CSI is partially overheard by mobiles and thus one can suppress transmitting CSI reports for time varying channels of inferior quality. We model the mechanism of feedback suppression as a Bayesian network, and show that the problem of minimizing the average feedback overhead is NP-hard. To deal with hardness of the problem we identify a class of feedback suppression structures which allow efficient computation of the cost. Leveraging such structures we propose an algorithm which not only captures the essence of seemingly complex overhearing relations among mobiles, but also provides a simple estimate of the cost incurred by a suppression structure. Simulation results are provided to demonstrate the improvements offered by the proposed scheme, e.g., a savings of 63-83% depending on the network size.

베이지안 네트워크와 신경망을 이용한 구매 패턴 분석 (A Purchase Pattern Analysis Using Bayesian Network and Neural Network)

  • 황정식;피수영;손창식;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.323-326
    • /
    • 2005
  • 실세계에서 일어나는 문제는 매우 복잡하고 다양하기 때문에 예측하기가 어렵고 다양한 상황들이 발생한다. 특히, 소비자의 구매에 따르는 행동을 분석하고 소비자의 다양한 기호를 예측하기 위해서는 구매자의 심리적 요인과 내적 요인이 많은 영향을 미치게 된다. 이러한 요인들은 직접적인 정보 처리가 어렵기 때문에 정보의 불확실성을 취급하는 기술이 필요하다. 따라서 본 논문에서는 상품 구매에 따르는 소비자의 구매행동 패턴을 분석하기 위해 판매자의 노하우와 소비자의 구매의식을 조사하여 이 데이터를 바탕으로 베이지안 네트워크를 구성하고 구매패턴을 분류하는 방법을 제안하였다. 특히, 베이지안 네트워크를 이용하여 불필요한 속성을 가진 데이터를 제거한 후 코호넨의 SOM을 이용하여 소비자의 구매 패턴을 분류하도록 하였다.

  • PDF

동적 베이지안 네트워크를 이용한 델티모달센서기반 사용자 행동인식 (Activity Recognition based on Multi-modal Sensors using Dynamic Bayesian Networks)

  • 양성익;홍진혁;조성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권1호
    • /
    • pp.72-76
    • /
    • 2009
  • 최근 유비쿼터스 컴퓨팅에 대한 관심이 높아지면서 유비쿼터스 환경에서의 서비스를 위한 인간과 컴퓨터의 상호 작용, 특히 인간의 행동을 인식하는 연구가 활발히 진행되고 있다. 기존의 영상기반 연구와는 달리 모바일 환경에 적합하도록 가속도 센서, 생리신호 센서 등 다양한 센서들을 활용하여 사용자의 행동을 인식하는 기법이 연구되고 있다. 본 논문에서는 멀티모달 센서들을 통합하고 동적 베이지안 네트워크를 계층적으로 구성하여 사용자의 행동을 인식하는 방법을 제안한다. 연산량이 비교적 적은 베이지안 네트워크로 전반적인 사용자 행동을 추론하고 획득된 각 행동의 확률순으로 동적 베이지안 네트워크를 구성한다. 동적 베이지안 네트워크는 OVR(One-Versus-Rest) 전략으로 학습되며, 확률순으로 행동이 검증되어 임계치를 넘는 경우 선택된 행동보다 낮은 확률의 행동에 대한 동적 베이지안 네트워크를 검증하지 않아 추론 연산량을 줄인다. 본 논문에서는 가속도 센서와 생리적 신호 센서를 기반으로 총 8가지의 행동을 인식하는 문제에 제안하는 방법을 적용하여 평균적으로 97.4%의 분류 정확률을 얻었다.

Bayesian 4P-Beta 모형을 이용한 극치 강수량 전망 기법 개발 (A Development of Extreme Rainfall Outlook Using Bayesian 4P-Beta Model)

  • 김용탁;김호준;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.312-312
    • /
    • 2019
  • 지구온난화로 인하여 기상학적 변동성 증가 및 수질, 수자원, 생태계 등의 다양한 영역에 영향을 야기하고 있으며, 이를 통한 피해가 전 세계적으로 증가하고 있는 추세이다. 이에 본 연구에서는 최근 다양한 분야에서 수문학적 빈도에 영향을 미친다고 알려진 AO(Arctic Oscillation), NAO(North Atlantic Oscillation), ENSO(El $Ni{\tilde{n}}o$-Southern Oscillation), PDO(Pacific Decadal Oscillation), MJO(Madden-Julian Oscillation)등의 외부인자중 SST, MJO를 활용하여 계절단위의 수문량 정도에서 기상학적 변량과 관측유역 강수량의 관계를 정립하고 발생 가능한 24시간 지속시간 극치강수량을 모의하였다. 이를 위하여 Bayesian 통계기법을 이용한 비정상성 빈도해석모형을 근간으로 외부 기상인자에 의한 계절강수량 예측모형인 계층적 베이지안 네트워크(Hierarchical Bayesian Network, HBN)를 구축한 후 산정된 결과를 입력 자료로 하여 직접적으로 일단위 이하의 극치강수량을 상세화 시킬 수 있는 베타 모델(four parameter beta, 4PB)을 연계한 계층적 베이지안 네트워크 베타모델(Hierarchical Bayesian Network-4beta Model, HBN4BM)을 개발하여 기상변동성을 고려한 상세화 모형을 개발하였다. 여름강수량 산정 결과 한강 유역의 경우 2016년은 관측값 573.85mm, 모의 값 567.15mm를 나타내어 약 1.2%의 오차를 나타냈으며, 2017년 및 2018년은 4.5%, 6.8%의 오차에서 모의가 이루어졌다. 금강의 경우 2016년은 다른 연도에 비하여 35.2%라는 큰 오차를 보였지만 불확실성 구간에서 모의가 이루어 졌으며, 2017년 및 2018년은 0.3%, 2.1%의 작은 오차가 발생하였다. 24시간 모의 결과는 최소 0.7%에서 최대 27.1%의 오차를 나타냈으며, 평균적으로 16.4%의 오차 결과가 모의되어 모형의 신뢰성을 확인하였다.

  • PDF

베이지언 사용한 패키지 소프트웨어 인증을 위한 시험 메트릭 선택 기법 (A Method of Selecting Test Metrics for Certifying Package Software using Bayesian Belief Network)

  • 이종원;이병정;오재원;우치수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권10호
    • /
    • pp.836-850
    • /
    • 2006
  • 오늘날 급속한 패키지 소프트웨어 제품의 증가 추세에 따라서, 소프트웨어 제품에 대한 품질 시험 요구 또한 증가하였다. 소프트웨어 제품 시험 시 중요한 요소는 무엇을 시험할지 기준이 되는 메트릭의 선정이다. 본 연구에서는 패키지 소프트웨어 종류를 특성 벡터들로 표현하여 메트릭들과의 연관 관계를 확률로서 세밀하게 표현한다. 특성 벡터란 소프트웨어의 형식 분류 지시자라고 할 수 있으며 특정한 패키지 소프트웨어가 다른 것들과 어떻게 구별되는지 나타낼 수 있다. 분류된 각각의 소프트웨어 형식별로 메트릭을 선정하기 위해서 과거 시험 데이타를 분석하여 활용한다. 베이지언망이 과거 데이타 분석에 이용되며 특성 벡터와 메트릭 간의 의존 관계 네트워크를 구축한다. 구축된 베이지언망은 새로운 패키지 소프트웨어 시험 작업에 적절한 메트릭을 찾아내는데 활용된다.

Recurrent Neural Network Modeling of Etch Tool Data: a Preliminary for Fault Inference via Bayesian Networks

  • Nawaz, Javeria;Arshad, Muhammad Zeeshan;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.239-240
    • /
    • 2012
  • With advancements in semiconductor device technologies, manufacturing processes are getting more complex and it became more difficult to maintain tighter process control. As the number of processing step increased for fabricating complex chip structure, potential fault inducing factors are prevail and their allowable margins are continuously reduced. Therefore, one of the key to success in semiconductor manufacturing is highly accurate and fast fault detection and classification at each stage to reduce any undesired variation and identify the cause of the fault. Sensors in the equipment are used to monitor the state of the process. The idea is that whenever there is a fault in the process, it appears as some variation in the output from any of the sensors monitoring the process. These sensors may refer to information about pressure, RF power or gas flow and etc. in the equipment. By relating the data from these sensors to the process condition, any abnormality in the process can be identified, but it still holds some degree of certainty. Our hypothesis in this research is to capture the features of equipment condition data from healthy process library. We can use the health data as a reference for upcoming processes and this is made possible by mathematically modeling of the acquired data. In this work we demonstrate the use of recurrent neural network (RNN) has been used. RNN is a dynamic neural network that makes the output as a function of previous inputs. In our case we have etch equipment tool set data, consisting of 22 parameters and 9 runs. This data was first synchronized using the Dynamic Time Warping (DTW) algorithm. The synchronized data from the sensors in the form of time series is then provided to RNN which trains and restructures itself according to the input and then predicts a value, one step ahead in time, which depends on the past values of data. Eight runs of process data were used to train the network, while in order to check the performance of the network, one run was used as a test input. Next, a mean squared error based probability generating function was used to assign probability of fault in each parameter by comparing the predicted and actual values of the data. In the future we will make use of the Bayesian Networks to classify the detected faults. Bayesian Networks use directed acyclic graphs that relate different parameters through their conditional dependencies in order to find inference among them. The relationships between parameters from the data will be used to generate the structure of Bayesian Network and then posterior probability of different faults will be calculated using inference algorithms.

  • PDF

모바일 컨텍스트 로그를 사용한 속성별 베이지안 네트워크 기반의 랜드마크 예측 모델 학습 (Learning Predictive Models of Memory Landmarks based on Attributed Bayesian Networks Using Mobile Context Log)

  • 이병길;임성수;조성배
    • 인지과학
    • /
    • 제20권4호
    • /
    • pp.535-554
    • /
    • 2009
  • 모바일 장비에서 수집되는 정보는 개인의 기억을 보조하기 위한 수단으로 활용될 수 있지만, 그 양이 너무 많아 사용자가 효과적으로 검색하기에는 어려움이 있다. 데이터를 사람의 기억과 유사한 에피소드 방식으로 저장하기 위해 중요 이벤트인 랜드마크를 탐지하는 것이 필요하다. 본 논문에서는 사용자에게 새로운 서비스를 제공하기 위해서 다양한 컨텍스트 로그 정보로부터 자동으로 랜드마크를 찾아내는 속성별 베이지안 랜드마크 예측 모델을 제안한다. 랜드마크 예측 정확도를 높이기 위해 요일별, 주간별로 데이터를 나누고 다시 수집된 경로에 따른 속성으로 분류하여 학습을 통해 베이지안 네트워크를 생성하였다. 노키아의 로그데이터로 실험한 결과, 베이지안 네트워크를 사용한 방법이 SVM을 사용한 방법보다 예측성능이 높았으며, 주간별 및 요일별로 설계한 베이지안 네트워크에 비해 제안한 방법인 속성별 베이지안 네트워크의 성능이 가장 우수하였다.

  • PDF

베이지안 망에 기초한 불임환자 임상데이터의 분석 (Bayesian Network-Based Analysis on Clinical Data of Infertility Patients)

  • 정용규;김인철
    • 정보처리학회논문지B
    • /
    • 제9B권5호
    • /
    • pp.625-634
    • /
    • 2002
  • 본 논문에서는 베이지안 망을 기초로 불임환자의 임상 데이터에 대한 다양한 분석 실험을 전개하였다. 이 실험을 통해 임신여부에 영향을 주는 요인들간의 상호의존성을 분석해보고, 또 NBN, BAN, GBN 등 제약조건이 다른 다양한 유형의 베이지안 망 분류기들의 분류성능을 서로 비교해보았다. 그리고 우리는 이와 같은 실험을 통해 임신가능여부(Clin)에 직접적인 영향을 미치는 중요한 요인들로 증상(IND), 약물치료법(stimulation), 여성의 나이(FA), 미세조작 난자의 수(ICT), Wallace 사용여부(ETM) 등 5개의 특성들을 가려낼 수 있었고, 이 요인들간의 상호 의존성도 찾아낼 수 있었다. 또 서로 다른 유형의 베이지안 망 분류기들 중에서 요인들간의 상호의존관계를 허용하는 좀 더 일반적인 BAN과 GBN 등이 그렇지 못한 NBN에 비해 상대적으로 더 높은 분류 성능을 보여준다는 것을 확인하였다. 또 결정트리와 k-최근접 이웃과 같은 다른 분류기들과의 성능 비교를 통해, 임상 데이터의 특성상 확률적 표현과 추론에 기초한 베이지안 망 분류기들이 보다 높은 성능을 보여준다는 사실도 확인할 수 있었다. 또 본 논문에서는 클래스 노드의 Markov blanket에 속한 특성들로 특성집합을 축소하는 것을 제안하고, 실험을 통해 이 특성 축소방법이 베이지안 망 분류기들의 성능을 높여 줄 수 있는지 알아보았다.