• 제목/요약/키워드: Bayesian information

검색결과 1,230건 처리시간 0.026초

미러영상 특징을 이용한 Joint Bayesian 개선 방법론 (An Improved Joint Bayesian Method using Mirror Image's Features)

  • 한성휴;안정호
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권5호
    • /
    • pp.671-680
    • /
    • 2015
  • Joint Bayesian 방법론[1]은 2012년 발표된 이후 최근까지 최고 성능을 보이는 거의 모든 얼굴인식 알고리즘에서 이진 분류를 위해 사용되고 있지만, 지금까지 이를 개선한 알고리즘은 2D-JB[2] 외에 거의 발표되지 않았다. 우리는 본 논문에서 주어진 얼굴 영상과 이를 좌우 반전시킨 미러 영상을 함께 고려함으로써 Joint Bayesian 방법론의 성능을 향상시킬 수 있는 방법론을 제안한다. 일반적인 패턴인식에서 결정함수 값이 결정경계 또는 임계치에 가까운 경우 오류가 발생할 확률이 높다. 제안한 방법론은 미러 영상의 특징을 이용하여 결정함수 값을 결정경계로부터 멀어지게 함으로써 오류를 줄이는 방법이다. 우리는 LFW DB를 이용한 실험을 통해 제안한 JB 개선 방법론이 기존 JB 방법론보다 1%이상 높은 인식률을 보임을 입증하였다. LFW DB를 이용한 기존 연구들에서 성능을 1% 높이기 위해 많은 학습데이터가 필요했음을 감안할 때, 제안한 방법론은 큰 의미가 있다고 볼 수 있다.

ZigBee 실내 위치 인식 알고리즘의 정확도 평가 (Accuracy evaluation of ZigBee's indoor localization algorithm)

  • 노안젤라송이;이웅재
    • 인터넷정보학회논문지
    • /
    • 제11권1호
    • /
    • pp.27-33
    • /
    • 2010
  • 본 논문은 실내 위치 인식을 위하여 ZigBee 이동 장치의 위치를 측정하였으며 Bayesian Markov 위치 추론 기법을 적용하였다. 정확도 분석을 위해 기존의 지도 기반의 위치 인식 기법과 비교하였는데 이 기법은 이미 지정된 위치에서의 RSSI 데이터를 데이터베이스화하여 참조하도록 하는 반면 Bayesian Markov 추론 방법은 시간, 방향, 거리의 변화에 영향을 받았다. 이 두가지 방법에 따른 측정은 지그비 모듈을 사용하여 RSSI를 측정한 결과를 토대로 이루어졌으며 그 결과 실내에서의 RSSI와 거리와의 관계로 접근하는 것이 바람직하며 Bayesian Markov에 의한 분석결과 기존의 지도 기반 위치 인식 기법에 비하여 높은 정확도를 보여주었다. 결과적으로 기존의 지도 기반 위치 인식 기법은 사전에 환경 요인에 대한 설정을 해주어야 하고, 보다 낮은 정확도를 가지고 있으므로 환경 변화가 잦은 실내에서는 부적합하다고 생각된다.

스마트폰을 위한 베이지안 네트워크 기반 지능형 에이전트 (Intelligent Agent based on Bayesian Network for Smartphone)

  • 한상준;조성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제11권1호
    • /
    • pp.81-91
    • /
    • 2005
  • 최근 이동전화가 사람 사이의 커뮤니케이션에 있어서 필수적인 수단으로 자리 잡고 있다. 사용사가 논어간에 따라 이동전화망을 이용한 각종 부가 서비스들이 개발되고 고성능의 단말기들이 등장하고 있다. 또한 유비쿼터스 컴퓨팅 개념의 발전과 더불어 스마트폰에서 여러 가지 새롭고 편리한 서비스를 제공하기 위한 연구가 활발히 진행되고 있다. 본 논문에서는 스마트폰에서의 개인화된 지능형 서비스를 위하여 베이지안 네트워크를 이용한 사용사 모델링과 규칙기반 서비스 선택기능을 갖춘 지능형 에이전트를 제안한다. 이 에이전트는 베이지안 네트워크를 사용하여 개인정보와 통신기록 자료로부터 사용사의 감정, 바쁨의 정도, 상대방과의 친밀도를 추론한 후 얻어진 정보를 사용하여 적절한 행동을 제시한다. 몇 가지 상황에 적용하여 제안한 지능형 에이전트의 유용성을 보인다

베이지안 방식에 의한 지구물리 역산 문제의 접근 (A Bayesian Approach to Geophysical Inverse Problems)

  • 오석훈;정승환;권병두;이희순;정호준;이덕기
    • 지구물리와물리탐사
    • /
    • 제5권4호
    • /
    • pp.262-271
    • /
    • 2002
  • 본 연구에서는 지구물리 자료의 베이지안 역산을 효과적으로 수행하는 방법에 관해 논의하였다. 베이지안 처리에서 가장 문제가 되는 사전확률분포를 구하기 위해 지구통계학적 방법을 적용하였으며, 사후확률분포의 추정을 위해 MCMC(Markov Chain Monte Carlo) 방법을 적용하였다. 쌍극자배열 전기비저항 탐사 자료의 2차원 역산을 위해 슐럼버저배열 전기비저항탐사 자료와 시추공 자료를 사전 정보로 이용하였으며, 이들 사전정보에 대해 지구통계학적 방법을 적용하여 사전확률분포를 작성하였다. 쌍극자배열 전기비저항 탐사 자료를 최대 우도함수로 하는 사후확률분포는 차원이 매우 높은 적분을 요구하므로, 이를 추정하기 위해 MCMC기술을 적용하였으며, 보다 효율적인 접근을 위해 Gibbs샘플링 방법을 이용하였다. 그 결과 비모수적 방식으로 사후확률분포를 분석함으로써 보다 신뢰성 있는 해를 구할 수 있었으며, 주변화(marginalization)된 사후확률분포를 이용하여 다양한 분석을 적용할 수 있었다.

생물학적으로 의미 있는 특질에 기반한 베이지안 네트웍을 이용한 microRNA의 예측 (cmicroRNA prediction using Bayesian network with biologically relevant feature set)

  • 남진우;박종선;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (A)
    • /
    • pp.53-58
    • /
    • 2006
  • MicroRNA (miRNA)는 약 22 nt의 작은 RNA 조각으로 이루어져 있으며 stem-loop 구조의 precursor 형태에서 최종적으로 만들어 진다. miRNA는 mRNA의 3‘UTR에 상보적으로 결합하여 유전자의 발현을 억제하거나 mRNA의 분해를 촉진한다. miRNA를 동정하기 위한 실험적인 방법은 조직 특이적인 발현, 적은 발현양 때문에 방법상 한계를 가지고 있다. 이러한 한계는 컴퓨터를 이용한 방법으로 어느 정도 해결될 수 있다. 하지만 miRNA의 서열상의 낮은 보존성은 homology를 기반으로 한 예측을 어렵게 한다. 또한 기계학습 방법인 support vector machine (SVM) 이나 naive bayes가 적용되었지만, 생물학적인 의미를 해석할 수 있는 generative model을 제시해 주지 못했다. 본 연구에서는 우수한 miRNA 예측을 보일 뿐만 아니라 학습된 모델로부터 생물학적인 지식을 얻을 수 있는 Bayesian network을 적용한다. 이를 위해서는 생물학적으로 의미 있는 특질들의 선택이 중요하다. 여기서는 position weighted matrix (PWM)과 Markov chain probability (MCP), Loop 크기, Bulge 수, spectrum, free energy profile 등을 특질로서 선택한 후 Information gain의 특질 선택법을 통해 예측에 기여도가 높은 특질 25개 와 27개를 최종적으로 선택하였다. 이로부터 Bayesian network을 학습한 후 miRNA의 예측 성능을 10 fold cross-validation으로 확인하였다. 그 결과 pre-/mature miRNA 각 각에 대한 예측 accuracy가 99.99% 100.00%를 보여, SVM이나 naive bayes 방법보다 높은 결과를 보였으며, 학습된 Bayesian network으로부터 이전 연구 결과와 일치하는 pre-miRNA 상의 의존관계를 분석할 수 있었다.

  • PDF

다중대체와 재현자료 작성 (Multiple imputation and synthetic data)

  • 김정연;박민정
    • 응용통계연구
    • /
    • 제32권1호
    • /
    • pp.83-97
    • /
    • 2019
  • 사회가 발전함에 따라 이용자의 다양한 분석 요구에 대응하기 위해 개인 단위로 구성된 마이크로데이터 제공이 증가했다. 나아가 센서스, 행정자료와 같은 전수자료를 마이크로데이터 형태로 제공받아 연구하고자 하는 요구 역시 커지고 있다. 정책결정, 학술목적 등을 위한 마이크로데이터 분석은 가치 창출 측면에서 대단히 바람직하다. 하지만 자료 유용성이 확보된 마이크로데이터 제공은 개인정보가 노출될 가능성이라는 위험을 가질 수 밖에 없다. 이에, 자료의 유용성을 확보하면서 개인정보보호를 보장할 수 있는 여러 방법들이 고려되어 왔다. 이러한 방법 중 하나로 재현자료(synthetic data)를 생성해서 활용하는 방법이 연구되어 왔다. 본 논문은 재현자료 생성과 관련된 방법론 및 주의사항을 소개하여, 재현자료의 이해를 도모하고자 한다. 이를 위해 재현자료 작성에 필수적인 다중대체, 베이지안 예측 모형 및 베이지안 붓스트랩 등의 개념들을 먼저 설명하고, 완전 재현자료 및 부분 재현자료에 대해 살펴본다. 특히, 재현자료 작성을 심도 깊이 이해하기 위해 순차회귀 다중대체(sequential regression multivariate imputation)를 이용해 경시적(longitudinal) 자료를 재현자료로 작성하는 구체적 사례를 살펴본다.

Bayesian 기법을 이용한 혼합 Gumbel 분포 매개변수 추정 및 강우빈도해석 기법 개발 (A Bayesian Approach to Gumbel Mixture Distribution for the Estimation of Parameter and its use to the Rainfall Frequency Analysis)

  • 최홍근;오랑치맥솜야;김용탁;권현한
    • 대한토목학회논문집
    • /
    • 제38권2호
    • /
    • pp.249-259
    • /
    • 2018
  • 우리나라의 기후 지형적 특성에 따라 연강수량의 50% 이상이 여름철에 내린다. 이러한 짧은 기간에 집중적으로 내리는 강수량 조건하에 수공구조물을 설계할 경우 대부분 극치빈도분석을 활용한다. 특히 우리나라의 경우 Gumbel 분포를 활용한 극치빈도분석을 많이 이용한다. 하지만, 최근 이상기후로 인하여 전세계적으로 강수량의 특징이 급격히 변하고 있으며, 우리나라 연강수량 특징도 바뀌고 있다. 즉, 기존의 단일 분포형으로 재현이 가능했던 수문기상 자료들이 혼합분포형의 특징을 가지게 되었으며 이러한 변화를 고려할 수 있는 극치빈도분석 개발이 요구되고 있는 실정이다. 본 연구에서는 두 개 이상의 첨두를 가지는 형태의 극치강수량 자료에 대해서 기존의 단일 Gumbel 분포형 기반 극치빈도분석과 혼합 Gumbel 분포형 기반의 극치빈도분석 결과를 비교하였다. 확률분포의 매개변수 산정시 우도함수를 Bayesian 기법을 통해 산정하여 각 분포형의 Bayesian information criterion (BIC) 값을 비교하였다. 분석한 결과, 앞서 제안된 혼합 Gumbel 분포형은 하나의 첨두를 가지는 단일 Gumbel 분포형에서 반영되지 못한 꼬리(tail)부분의 이중첨두 부분의 거동을 효과적으로 모의하는 것을 확인할 수 있었다. 결과적으로 설계강수량을 추정할 때 보다 신뢰성있는 접근이 가능하였다. 이러한 점에서 우리나라 극치강우자료 분석시 기존 단일분포기반의 빈도해석기법에 대안으로 적용이 가능할 것으로 판단된다.

Reducing Feedback Overhead in Opportunistic Scheduling of Wireless Networks Exploiting Overhearing

  • Baek, Seung-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권2호
    • /
    • pp.593-609
    • /
    • 2012
  • We propose a scheme to reduce the overhead associated with channel state information (CSI) feedback required for opportunistic scheduling in wireless access networks. We study the case where CSI is partially overheard by mobiles and thus one can suppress transmitting CSI reports for time varying channels of inferior quality. We model the mechanism of feedback suppression as a Bayesian network, and show that the problem of minimizing the average feedback overhead is NP-hard. To deal with hardness of the problem we identify a class of feedback suppression structures which allow efficient computation of the cost. Leveraging such structures we propose an algorithm which not only captures the essence of seemingly complex overhearing relations among mobiles, but also provides a simple estimate of the cost incurred by a suppression structure. Simulation results are provided to demonstrate the improvements offered by the proposed scheme, e.g., a savings of 63-83% depending on the network size.