본 논문은 최근 개발되는 헬기의 생존성 보장을 위하여 장착되는 센서체계에서 상호 독립적으로 수집된 센서 데이터의 융합 알고리즘 개발을 위하여 다양한 지식 기반의 데이터 융합 기법 등을 검토하였다. 이 논문에서는 다양한 데이터 융합기법 중에서 헬기 생존 계통 센서 체계의 데이터 응함에 유효한 대안이 될 수 있는 Bayesian Network를 이용한 지식 기반의 데이터 융합 기법 알고리즘을 설계하고 구현하였다.
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.394-399
/
2002
In this paper, Multisource data classification methods based on Bayesian formula are considered. For this decision fusion scheme, the individual data sources are handled separately by statistical classification algorithms and then Bayesian fusion method is applied to integrate from the available data sources. This method includes the combination of each expert decisions where the weights of the individual experts represent the reliability of the sources. The reliability measure used in the statistical approach is common to all pixels in previous work. In this experiment, the weight factors have been assigned to have different value for all pixels in order to improve the integrated classification accuracies. Although most implementations of Bayesian classification approaches assume fixed a priori probabilities, we have used adaptive a priori probabilities by iteratively calculating the local a priori probabilities so as to maximize the posteriori probabilities. The effectiveness of the proposed method is at first demonstrated on simulations with artificial and evaluated in terms of real-world data sets. As a result, we have shown that Bayesian statistical fusion scheme performs well on multispectral data classification.
Mobility and cloud platform have become the dominant paradigm to develop web services dealing with huge and diverse digital contents for scientific solution or engineering application. These two trends are technically combined into mobile cloud computing environment taking beneficial points from each. The intention of this study is to design and implement a mobile cloud application for remotely sensed image fusion for the further practical geo-based mobile services. In this implementation, the system architecture consists of two parts: mobile web client and cloud application server. Mobile web client is for user interface regarding image fusion application processing and image visualization and for mobile web service of data listing and browsing. Cloud application server works on OpenStack, open source cloud platform. In this part, three server instances are generated as web server instance, tiling server instance, and fusion server instance. With metadata browsing of the processing data, image fusion by Bayesian approach is performed using functions within Orfeo Toolbox (OTB), open source remote sensing library. In addition, similarity of fused images with respect to input image set is estimated by histogram distance metrics. This result can be used as the reference criterion for user parameter choice on Bayesian image fusion. It is thought that the implementation strategy for mobile cloud application based on full open sources provides good points for a mobile service supporting specific remote sensing functions, besides image fusion schemes, by user demands to expand remote sensing application fields.
본 논문에서는 무선센서네트워크에서 이루어지는 협동적 센서융합을 이용한 화자성별분류를 제안하였다. 센서노드들은 BER(Band Energy Ratio) 기반 음성활동검출을 수행함으로써 불필요한 입력 데이터는 제거하고 관련성이 높은 데이터만을 처리 및 경판정한다. 개별적 센서노드에서 생성된 경판정 값들은 융합센터로 송신되고 전역적 결정 융합을 구축하기 때문에 전력 소모를 줄이고 네크워크 자원을 절약한다. 화자성별분류를 위한 센서융합기법으로써 베이시안(Bayesian) 센서융합 및 전역적 가중결정융합가법들이 제안되었다. 베이시안 센서융합의 경우, 배치되는 센서노드 수 변화에 따른 ROC(Receiver Operating Characteristic) 커브의 동작점을 통해 개별 센서노드 레벨에서 얻어진 경판정 값들을 처리하고 최적의 분류 융합을 결정한다. 전역적 결정을 위한 가중치로써 BER 및 MCL(Mutual Confidence Level)을 채택하여 개별적 지역 경판정 값들을 효율적으로 결합 및 융합시킨다. 센서 노드의 수가 증가함에 따라 분류화 성능이 개선되어졌으며 특히 낮은 SNH(Signal to Noise Ratio) 환경에서 성능 개선폭이 더 높게 나타남을 실험적으로 확인하였다.
Park, No-Wook;Chi, Kwang-Hoon;Moon, Wooil-M.;Kwon, Byung-Doo
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.382-387
/
2002
In this paper, we propose a geostatistical approach incorporated to the Bayesian data fusion technique for supervised classification of multi-sensor remote sensing data. Traditional spectral based classification cannot account for the spatial information and may result in unrealistic classification results. To obtain accurate spatial/contextual information, the indicator kriging that allows one to estimate the probability of occurrence of classes on the basis of surrounding observations is incorporated into the Bayesian framework. This approach has its merit incorporating both the spectral information and spatial information and improves the confidence level in the final data fusion task. To illustrate the proposed scheme, supervised classification of multi-sensor test remote sensing data set was carried out.
데이터 연관은 지능시스템의 자율적인 작동에 매우 중요한 문제이다. 본 논문에서는 데이터 연관 문제를 Bayesian 방식으로 구성하고 이를 성공적으로 지능시스템에 응용한 예를 설명한다. 먼저 데이터 연관 문제가 어떻게 Bayesian 방식으로 구성하여 혼잡한 환경에서의 다 물체 추적 문제에 적용되는지 알아본다. 그리고 데이터 연관이 지능시스템에 어떻게 응용될 수 있는지 정체 관리를 이용한 항공 교통 관제, 카메라 네트워크 위치 및 관점 자동 보정, 멀티 센서 퓨젼의 세 가지 예를 이용해 살펴본다.
Manual inspection of steel box girders on long span bridges is time-consuming and labor-intensive. The quality of inspection relies on the subjective judgements of the inspectors. This study proposes an automated approach to detect and segment cracks in high-resolution images. An end-to-end cascaded framework is proposed to first detect the existence of cracks using a deep convolutional neural network (CNN) and then segment the crack using a modified U-Net encoder-decoder architecture. A Naïve Bayes data fusion scheme is proposed to reduce the false positives and false negatives effectively. To generate the binary crack mask, first, the original images are divided into 448 × 448 overlapping image patches where these image patches are classified as cracks versus non-cracks using a deep CNN. Next, a modified U-Net is trained from scratch using only the crack patches for segmentation. A customized loss function that consists of binary cross entropy loss and the Dice loss is introduced to enhance the segmentation performance. Additionally, a Naïve Bayes fusion strategy is employed to integrate the crack score maps from different overlapping crack patches and to decide whether a pixel is crack or not. Comprehensive experiments have demonstrated that the proposed approach achieves an 81.71% mean intersection over union (mIoU) score across 5 different training/test splits, which is 7.29% higher than the baseline reference implemented with the original U-Net.
SCC (Smart Cruise Control) and AEBS (Autonomous Emergency Braking System) are using various types of sensors data, so it is important to consider about sensor data reliability. In this paper, data from radar and vision sensor is fused by applying a Bayesian sensor fusion technique to improve the reliability of sensors data. Then, it presents a sensor fusion verification tool developed to monitor acquired sensors data and to verify sensor fusion results, efficiently. A parallel computing method was applied to reduce verification time and a series of simulation results of this method are discussed in detail.
정보 기술의 발전과 더불어 전장상황에서도 정보 시스템들의 고도화가 이루어짐으로써 적기에 대한 정보 획득 및 상황분석은 전장상황에서 주요한 요소가 되었다. 전장상황 분석의 핵심 요소인 위협평가는 피아식별을 통해 식별된 항공 정보를 가지고 해당 상황에 대한 위협치를 평가하여 무기할당에 정보를 제공하는 기술로써, 전장상황의 어느 단계 보다 확실한 정보를 요구하는 단계이다. 전장상황에서 대부분의 위협평가 데이터들은 감지된 센서 값에 의해 연산되어 전달되는데, 기존의 기법들에서 발생할 수 있는 센서 데이터들의 잘못된 연관관계 표현 및 데이터 누락은 전장상황에서의 의사결정에 혼란을 야기 시킬 수 있다. 따라서 각종 센서 데이터들의 연관 관계를 올바르게 정의하고, 센서데이터 누락에 따른 예측 불가능한 전투상황에 대한 신뢰도 높은 위협치 연산 알고리즘을 이용하는 효율적인 의사결정 위협평가 시스템이 필요하다. 본 논문에서는 JDL 정보 융합 모델을 기반으로 애매모호한 관계성을 표현하는데 유리한 퍼지 이론, 데이터 습득의 불확실한 전장상황에서 위협치를 추론하고 상황에 대한 학습이 가능한 베이지안 네트워크를 하이브리드하여 새로운 위협평가 방법을 제안한다. 또, 제안된 방법을 이용하여 가상의 전장 시나리오에 따른 위협평가 결과를 보였다.
주가지표처럼 동적이며 시간흐름을 따르는 시계열자료들을 이해하는 효과적인 방법은 주어진 시계열자료들에 대하여 모델을 결정함으로서 이해하는 것이 좋다. 주어진 자료들에 대한 모델 결정과정은 수집되어진 대용량 시계열자료 전체를 한 번에 다 살펴보는 것보다 자료를 특정의 중요한 몇 개의 하위그룹으로 군집화하여 각 군집별 모델결정을 통해 자료 전체를 이해하는 것이 효율적이다. 본 연구에서는 주어진 시계열자료들에 대하여 하위그룹으로의 효율적 군집화 과정 그리고 각 군집별 모델결정의 두 과정 중 첫 번째 과정인 하위집단으로 군집화 과정에 자료의 구간특징화 기법과 휴리스틱 베이지안기법의 융합을 이용하여 시간 및 계산비용을 감소시킬 수 있는 기법을 제안하였으며 실제적인 주가지표를 이용한 실험을 통해 제안하는 기법의 유효성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.