• 제목/요약/키워드: Bayesian analysis

검색결과 974건 처리시간 0.03초

위암 환자에서 반코마이신의 임상약물동태 (Clinical Pharmacokinetics of Vancomycin in Gastric Cancer Patients)

  • 최준식;장일효;범진필
    • 약학회지
    • /
    • 제41권2호
    • /
    • pp.195-202
    • /
    • 1997
  • The purpose of this study was to determine pharmacokinetic parameters of vancomycin using two point calculation(TPC) and Bayesian methods in 16 Korean normal volunteers and 15 g astric cancer patients. Nonparametric expected maximum(NPEM) algorithm for calculation of population pharmacokinetic parameter was used, and these parameters were applied for clinical pharmacokinetic parameters by Bayesian analysis. Vancomycin was administered 1.0g every 12 hrs for 3 days by IV infusion over 60 minutes. The volume of distribution(Vd), elimination rate constant(Kel) and total body clearance(CLt) of vancomycin in normal volunteers using TPC method were $0.34{\pm}0.06 L/kg,\; 0.19{\pm}0.01 hr^{-1}$ and $4.08 {\pm} 0.93 L/hr$, respectively, The Vd, Kel and CLt of vancomycin in gastric cancer patients using TPC method were $0.46 {\pm} 0.06 L/kg, 0.17{\pm}0.02 hr^{-1}$ and $4.84 {\pm} 0.57 L/hr$ respectively. There were significant differences(p<0.05) in Vd. Kel and CLt between normal volunteers and gastric cancer patients. Polpulation pharmacokinetic parameter, the slope(KS) of the relationship beetween Kel versus creatinine Clearance, and the Vd were $0.00157{\pm}0.00029(hr{\cdot}mL/min/1.73m^2)^{-1},\; 0.631 {\pm} 0.0036 L/kg$ in gastric cancer patients using NPEM algorithm respectively. The Vd and Kel were $0.63{\pm}0.005 L/kg, 0.15 {\pm}0.027 hr^{-1}$ for gastric cancer patients using Bayesian method. There were significant differences(p<0.05) in vancomycin pharmacokinetics between Bayesian and TPC methods. It is considered that the population parameter in the patient population is necessary for effective Bayesian method in clinical pharmacy practise.

  • PDF

대형할인매점의 요일별 고객 방문 수 분석 및 예측 : 베이지언 포아송 모델 응용을 중심으로 (Estimating Heterogeneous Customer Arrivals to a Large Retail store : A Bayesian Poisson model perspective)

  • 김범수;이준겸
    • 경영과학
    • /
    • 제32권2호
    • /
    • pp.69-78
    • /
    • 2015
  • This paper considers a Bayesian Poisson model for multivariate count data using multiplicative rates. More specifically we compose the parameter for overall arrival rates by the product of two parameters, a common effect and an individual effect. The common effect is composed of autoregressive evolution of the parameter, which allows for analysis on seasonal effects on all multivariate time series. In addition, analysis on individual effects allows the researcher to differentiate the time series by whatevercharacterization of their choice. This type of model allows the researcher to specifically analyze two different forms of effects separately and produce a more robust result. We illustrate a simple MCMC generation combined with a Gibbs sampler step in estimating the posterior joint distribution of all parameters in the model. On the whole, the model presented in this study is an intuitive model which may handle complicated problems, and we highlight the properties and possible applications of the model with an example, analyzing real time series data involving customer arrivals to a large retail store.

Cure rate proportional odds models with spatial frailties for interval-censored data

  • Yiqi, Bao;Cancho, Vicente Garibay;Louzada, Francisco;Suzuki, Adriano Kamimura
    • Communications for Statistical Applications and Methods
    • /
    • 제24권6호
    • /
    • pp.605-625
    • /
    • 2017
  • This paper presents proportional odds cure models to allow spatial correlations by including spatial frailty in the interval censored data setting. Parametric cure rate models with independent and dependent spatial frailties are proposed and compared. Our approach enables different underlying activation mechanisms that lead to the event of interest; in addition, the number of competing causes which may be responsible for the occurrence of the event of interest follows a Geometric distribution. Markov chain Monte Carlo method is used in a Bayesian framework for inferential purposes. For model comparison some Bayesian criteria were used. An influence diagnostic analysis was conducted to detect possible influential or extreme observations that may cause distortions on the results of the analysis. Finally, the proposed models are applied for the analysis of a real data set on smoking cessation. The results of the application show that the parametric cure model with frailties under the first activation scheme has better findings.

신경망을 이용한 우리나라의 시공 간적 가뭄의 해석 (Spatial-Temporal Frough Analysis of South Korea Based On Neural Networks)

  • 신현석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 1998년도 학술발표회 논문집
    • /
    • pp.7-13
    • /
    • 1998
  • 본 연구에서는 공간적으로 분포되어 있는 연강우량 자료를 이용한 지역 기상학 적인 가뭄을 정의하고 해석하는 모형을 제시한다. 비선형, 비매변수법에 기초한 공간 해석 신경망 (Spatial Analysis Neural Network:SANN)모형을 이용하여, 각 년에 대하여 공간의 임의 점에 서 의 극심, 심, 경심, 및 비 가뭄 확률을 전 대상 지역에 대하여 산출을 통하여 가뭄확률도를 작성 하며, Bayesian 가뭄 심도 지수 (BDSI)를 통하여 전 대상 지역을 가장 적절하게 극심, 심, 경심, 미 가뭄 지역으로 분류하는 방법을 제시한다. 또한, 각 년의 대표적인 가뭄의 형태를 제시 하여 줄 수 있는 지역 가뭄확률과 지역 가뭄 확률 지수를 소개한다. 이 모든 시공간의 가뭄 해석의 방법 은 실제로 우리나라(남한) 전역에 대하여 실시하여, 과거 1967년부터 1996년 까지 의 공간적이고 시간적인 가뭄의 발생 현황과 그 특징을 조사한다. 이는 우리나라 장기 수자원 개발 및 유역 관 리를 더욱 정량적인 가뭄정보에 의해 수행하게하여 줄 수 있을 것이다.

  • PDF

극치수문자료의 경향성 분석 개념 및 비정상성 빈도해석 (Concept of Trend Analysis of Hydrologic Extreme Variables and Nonstationary Frequency Analysis)

  • 이정주;권현한;김태웅
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1448-1452
    • /
    • 2010
  • 최근 기상변동성 증가 및 기후변화 영향으로 수문순환과정이 과거와는 다른 양상으로 전개되고 있으며 전반적으로 극치사상의 빈도 및 강도의 증가현상이 지배적이다. 이러한 영향을 정량적으로 검토하기 위해서 경향성분석 방법 등이 도입되어 극치수문사상의 변동경향을 평가하는데 이용되고 있다. 대표적인 방법으로 선형회귀분석, Mann-Kendall 경향성 분석 등이 있으나 기본적인 가정(assumption)의 제약으로 극치수문자료 계열의 특성을 효과적으로 분석하는데 무리가 있다. 대표적이고 일반적으로 적용되는 선형회귀분석의 경우 자료가 정규분포(normal distribution)의 특성을 가질 때 유효한 방법으로서 극치수문자료와 같이 Heavy Tail를 가지는 분포특성을 표현하는 데는 무리가 따른다. 이밖에도 기존 선형회귀분석을 극치수문자료에 적용할 경우 추정된 결과를 수자원설계의 관심사항인 빈도해석 등에 직접적으로 연계시켜 해석할 수 없는 단점이 있다. 이는 자료계열의 분포특성을 정규분포로 가정하기 때문에 발생하는 문제로서 극치수문자료계열의 분포 특성을 반영할 수 있는 방법론의 개발이 필요하다. 본 연구에서는 이러한 점을 개선하기 위해서 극치분포(extreme distribution)를 선형회귀분석에 적용하는 비정상성빈도해석(nonstationary frequency analysis) 방법론의 개념을 제시하고자 한다. 비정상성빈도해석을 위해서 Bayesian 기법이 도입되며 Bayesian 기법의 특성상 관련변수들이 사후분포(posterior distribution)로 귀결되기 때문에 경향성에 대한 정량적이고 확률적인 분석이 가능한 장점이 있다. 본 연구를 통해 개발된 방법론은 국내외 주요 강수지점에 대해서 적용되며 경향성, 분포특성, 빈도별 강수량에 대한 체계적인 분석이 이루어진다.

  • PDF

Taxonomic reconsideration of Chinese Lespedeza maximowiczii (Fabaceae) based on morphological and genetic features, and recommendation as the independent species L. pseudomaximowiczii

  • JIN, Dong-Pil;XU, Bo;CHOI, Byoung-Hee
    • 식물분류학회지
    • /
    • 제48권3호
    • /
    • pp.153-162
    • /
    • 2018
  • Lespedeza maximowiczii C. K. Schneid. (Fabaceae) is a deciduous shrub which is known to be distributed in the temperate forests of China, Korea and on Tsushima Island of Japan. Due to severe morphological variations within species, numerous examinations have been conducted for Korean L. maximowiczii. However, the morphology of Chinese plants has not been studied as thoroughly, despite doubts about their taxonomy. To clarify this taxonomic issue, we investigated morphological characters and undertook a Bayesian clustering analysis with microsatellite markers. The morphological and genetic traits of Chinese individuals varied considerably from those of typical L. maximowiczii growing in Korea. For example, petals of the former had a different shape and bore long claws, while the calyx lobes were diverged above the middle and the upper surface of the leaflet was pubescent. Their terete buds and spirally arranged bud scales were distinct from those within the series/section Heterolespedeza, which includes L. maximowiczii. Our Bayesian clustering analysis additionally included L. buergeri as an outgroup. Those results indicated that the Chinese samples clustered into a lineage separated from L. maximowiczii (optimum cluster, K = 2), despite the fact that the latter is grouped into the same lineage with L. buergeri. Therefore, we treat those Chinese plants as a new species with the name L. pseudomaximowiczii.

베이지안 네트워크를 이용한 아차사고 평가 모델 개발 및 주요 원인 도출 (Development of Near miss Assessment Model Using Bayesian Network and Derivation of Major Causes)

  • 하선영;이미정;백종배
    • 한국안전학회지
    • /
    • 제38권4호
    • /
    • pp.54-59
    • /
    • 2023
  • The relationship between near misses and major accidents can be confirmed using the ratios proposed by Heinrich and Bird. Systematic reviews of previous national and international studies did not reveal the assessment process used in near-miss management systems. In this study, a model was developed for assessing near misses and major factors were derived through case application. By reviewing national and international literature, 14 factors were selected for each dimension of the P2T (people, procedure, technology) model. To identify the causal relationship between accidents and these factors, a near-miss assessment model was developed using a Bayesian network. In addition, a sensitivity analysis was conducted to derive the major factors. To verify the validity of the model, near-miss data obtained from the ethylene production process were applied. As a result, "PE2 (education)," "PR1 (procedure)," and "TE1 (equipment and facility not installed)" were derived as the major factors causing near misses in this process. If actual workplace data are applied to the near-miss assessment model developed in this study, results that are unique to the workplace can be confirmed. In addition, scientific safety management is possible only when priority is given through sensitivity analysis.

집중호우사상의 발생횟수 분석을 위한 확률분포의 비교 (Comparison of probability distributions to analyze the number of occurrence of torrential rainfall events)

  • 김상욱;김형배
    • 한국수자원학회논문집
    • /
    • 제49권6호
    • /
    • pp.481-493
    • /
    • 2016
  • 본 연구에서는 최근 기후변화로 인한 집중호우의 발생횟수의 경향을 확률적으로 분석함에 있어 1개월 동안 80 mm/day 이상의 강우사상을 집중호우로 정의하여, 대구 및 부산 강우관측소로부터 수집된 384개월 동안의 집중호우를 분석하였다. 집중호우 월별 발생횟수와 같은 형식의 자료의 확률적 분석은 대개 Poisson 분포 (POI)가 사용되나 자료에 포함된 0자료의 과잉은 확률분포를 왜곡시키는 문제를 발생시킨다. 본 연구에서는 이 문제를 개선하기 위하여 개발된 일반화 Poisson 확률분포 (GPD), 0-과잉 Poisson 확률분포 (ZIP), 0-과잉 일반화 Poisson 확률분포 (ZIGP), Bayesian 0-과잉 일반화 Poisson 확률분포 (Bayesian ZIGP)를 집중호우 자료에 적용하고, 5개 모형의 특성을 비교분석하였으며, Bayesian ZIGP 모형의 구축에 있어서는 정보적 사전분포를 사용함으로써 모형의 정확도를 개선하였다. 분석결과 분석하고자 하는 자료에 0이 과다하게 포함되어 있는 경우 POI 및 GPD 분포는 관측결과와는 다른 결과를 제시하여 적절한 모형으로 고려되지 못함을 알 수 있었다. 5가지 모형 중 정보적 사전분포를 탑재한 Bayesian ZIGP 모형이 가장 관측 자료와 유사한 결과를 도출하였으나 모형의 구축에 수반되는 실용적인 측면을 고려하면 ZIP 모형도 충분히 사용될 수 있는 모형으로 추천되었다.

지구물리 자료의 고속 베이지안 역산 (Fast Bayesian Inversion of Geophysical Data)

  • 오석훈;권병두;남재철;이덕기
    • 지구물리
    • /
    • 제3권3호
    • /
    • pp.161-174
    • /
    • 2000
  • 베이지안 역산(Bayesian inversion)은 불충분한 자료를 가지고 지하구조를 추정해야 하는 지구물리자료의 해석에 있어서 안정적이고 신뢰를 줄 수 있는 방법 중의 하나이다. 관측 자료가 측정 과정부터 불확실성을 함유하고 있으며, 역산에 이용되는 이론 자료 또한 모델의 매개변수화에 따른 각종 불확실성을 포함하고 있다. 따라서 지구물리 자료의 역산은 확률적으로 접근하는 것이 가장 바람직하며 베이지안 역산은 이에 대한 처리뿐만 아니라, 추정에 대한 신뢰도와 불확실성에 대한 이론적 근거를 제공한다. 그러나 대부분의 베이지안 역산이 고차원의 적분을 필요로 하므로 몬테 카를로 방법과 같은 대규모의 계산이 요구되는 방법에 의해 사후 확률분포가 구해지는 경우가 많다. 이는 특히 지구물리 자료와 같이 고도의 비선형 자료에 대하여 매우 적합한 접근 방법이기는 하지만, 점차 현장화, 고속화되어가는 자료의 해석 경향에 맞추어 간략하게 사후 확률분포를 근사한 수 있는 기법의 연구 또한 필요하다. 따라서 이 연구에서는 관측자료와 사전 확률분포가 정규분포에 의해 근사 될 수 있는 지구물리자료에 대한 베이지안 역산에 대해 논의 하고자 한다. 사전 확률분포의 작성을 위해 지구통계학적 기법이 이용되었으며, 관측자료의 통계적 불화실성을 추정하기 위해 교차 검사(cross-validation) 방법을 이용하여 공분산(covariance)을 유도하고 그것에 의한 우도 함수(likelihood function)를 작성하였다. 베이지안 해석을 위해 두 확률분포를 곱하여 근사적인 사후 확률분포를 얻을 수 있었으며, 이에 대해 최적화(optimization) 기법을 이용하여 최대 사후 확률(Maximum a Posterior)을 따르는 지하 구조를 얻을 수 있었다. 또한 사후 확률 분포의 공분산 항을 이용하여 지하 비저항 구조를 시뮬레이션 하여 불확실성분석을 수행하였다.

  • PDF

Bayesian과 Bootstrap 방법을 이용한 수위-유량 관계곡선의 불확실성 분석 (Uncertainty Analysis of Stage-Discharge Curve Using Bayesian and Bootstrap Methods)

  • 임종훈;권형수;주홍준;왕원준;이종소;유영훈;김형수
    • 한국습지학회지
    • /
    • 제21권2호
    • /
    • pp.114-124
    • /
    • 2019
  • 본 연구는 수위-유량 관계곡선을 이용한 하천 유량 산정방법의 불확실성을 감소시키는 것을 목적으로 하였다. 하천 유량 자료는 수문해석과 수자원 관리를 하는데 있어서 필수적으로 요구되는 자료이기 때문에 정량적으로 정확한 산정 방법을 고찰할 필요가 있다. 이를 위해 Bayesian 및 Bootstrap 방법을 이용한 수위-유량 관계식의 매개변수와 기존의 매개변수를 비교하였으며, 불확실성을 평가하기 위해서 표준오차법에 t-분포를 적용한 추정치 결과의 신뢰구간을 비교하였다. 그 결과, 본 연구를 통해 개발된 회귀분석에 의한 추정값은 약 1~5 %미만의 차이가 보이며, 각 지점에서 수위에 따라 기존보다 더 적용성이 우수한 결과를 보이는 부분도 존재함을 확인하였다. 따라서 본 연구에서 제시한 방법별로 하천의 특성 및 수위에 맞게 적용한다면 보다 더 신뢰성 있는 유량 자료를 확보할 수 있을 것으로 생각된다.