• Title/Summary/Keyword: Bayesian Prediction

Search Result 304, Processing Time 0.033 seconds

Group Emotion Prediction System based on Modular Bayesian Networks (모듈형 베이지안 네트워크 기반 대중 감성 예측 시스템)

  • Choi, SeulGi;Cho, Sung-Bae
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1149-1155
    • /
    • 2017
  • Recently, with the development of communication technology, it has become possible to collect various sensor data that indicate the environmental stimuli within a space. In this paper, we propose a group emotion prediction system using a modular Bayesian network that was designed considering the psychological impact of environmental stimuli. A Bayesian network can compensate for the uncertain and incomplete characteristics of the sensor data by the probabilistic consideration of the evidence for reasoning. Also, modularizing the Bayesian network has enabled flexible response and efficient reasoning of environmental stimulus fluctuations within the space. To verify the performance of the system, we predict public emotion based on the brightness, volume, temperature, humidity, color temperature, sound, smell, and group emotion data collected in a kindergarten. Experimental results show that the accuracy of the proposed method is 85% greater than that of other classification methods. Using quantitative and qualitative analyses, we explore the possibilities and limitations of probabilistic methodology for predicting group emotion.

Prediction on Clusters by using Information Criterion and Multiple Seeds (정보기준과 다중 중심점을 활용한 클러스터별 예측)

  • Cho, Young-Hee;Lee, Gye-Sung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.145-152
    • /
    • 2010
  • Bayesian information criterion is used to do clustering for time series data. To acquire more stable clusters, multiple seeds are chosen first for the algorithm. Once clusters being set up, most similar time series data in the cluster to the one under consideration are to be chosen for prediction test. These chosen time series data are used to extract valid Markov rules by which we test the prediction accuracy. We confirmed that clustering with multiple seeds led to better prediction performance.

Uncertainty and Updating of Long-Term Prediction of Prestress in Prestressed Concrete Bridges (프리스트레스트 콘크리트 교량의 프리스트레스 장기 예측의 불확실성 및 업데이팅)

  • 양인환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.251-259
    • /
    • 2004
  • The prediction accuracy of prestress plays an important role in the quality of maintenance and the decision on rehabilitation of infrastructure such as prestressed concrete bridges. In this paper, the Bayesian statistical method that uses in-situ measurement data for reducing the uncertainties or updating long-term prediction of prestress is presented. For Bayesian analysis, prior probability distribution is developed to represent the uncertainties of creep and shrinkage of concrete and likelihood function is derived and used with data acquired in site. Posterior probability distribution is then obtained by combining prior distribution and likelihood function. The numerical results of this study indicate that more accurate long-term prediction of prestress forces due to creep and shrink age is possible.

Bayesian concept of evidence (베이즈주의에서의 증거 개념)

  • Lee, Yeong-Eui
    • Korean Journal of Logic
    • /
    • v.8 no.2
    • /
    • pp.33-58
    • /
    • 2005
  • The old evidence problem raises a profound problem to Bayesian theory of confirmation that evidence known prior to a hypothesis explaining it cannot give any empirical support to the hypothesis. The old evidence problem has resisted to a lot of trials to solve it. The purpose of the paper is to solve the old evidence problem by showing that the problem originated from a serious misunderstanding about the Bayesian concept of confirmation. First, I shall make a brief analysis of the problem, and examine critically two typical Bayesian strategies to solve it. Second, I shah point out a misunderstanding commonly found among Bayesian discussions about the old evidence problem, the ignorance of the asymmetry of confirmation in the context of explanation and prediction. Lastly, 1 shall suggest two different concepts of confirmations by using the asymmetry and argue that the concept of confirmation presupposed in the old evidence problem is not a genuine Bayesian concept of confirmation.

  • PDF

Protein Secondary Structure Prediction using Multiple Neural Network Likelihood Models

  • Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.314-318
    • /
    • 2010
  • Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.

베이즈와 이산형 모형을 이용한 비율에 대한 추론 교수법의 고찰

  • 박태룡
    • Journal for History of Mathematics
    • /
    • v.13 no.1
    • /
    • pp.99-112
    • /
    • 2000
  • In this paper we discuss the teaching methods about statistical inferences. Bayesian methods have the attractive feature that statistical conclusions can be stated using the language of subjective probability. Simple methods of teaching Bayes' rule described, and these methods are illustrated for inference and prediction problems for one proportions. Also, we discuss the advantages and disadvantages of traditional and Bayesian approachs in teaching inference.

  • PDF

Bayesian Optimization Framework for Improved Cross-Version Defect Prediction (향상된 교차 버전 결함 예측을 위한 베이지안 최적화 프레임워크)

  • Choi, Jeongwhan;Ryu, Duksan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.339-348
    • /
    • 2021
  • In recent software defect prediction research, defect prediction between cross projects and cross-version projects are actively studied. Cross-version defect prediction studies assume WP(Within-Project) so far. However, in the CV(Cross-Version) environment, the previous work does not consider the distribution difference between project versions is important. In this study, we propose an automated Bayesian optimization framework that considers distribution differences between different versions. Through this, it automatically selects whether to perform transfer learning according to the difference in distribution. This framework is a technique that optimizes the distribution difference between versions, transfer learning, and hyper-parameters of the classifier. We confirmed that the method of automatically selecting whether to perform transfer learning based on the distribution difference is effective through experiments. Moreover, we can see that using our optimization framework is effective in improving performance and, as a result, can reduce software inspection effort. This is expected to support practical quality assurance activities for new version projects in a cross-version project environment.

Bayesian forecasting approach for structure response prediction and load effect separation of a revolving auditorium

  • Ma, Zhi;Yun, Chung-Bang;Shen, Yan-Bin;Yu, Feng;Wan, Hua-Ping;Luo, Yao-Zhi
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.507-524
    • /
    • 2019
  • A Bayesian dynamic linear model (BDLM) is presented for a data-driven analysis for response prediction and load effect separation of a revolving auditorium structure, where the main loads are self-weight and dead loads, temperature load, and audience load. Analyses are carried out based on the long-term monitoring data for static strains on several key members of the structure. Three improvements are introduced to the ordinary regression BDLM, which are a classificatory regression term to address the temporary audience load effect, improved inference for the variance of observation noise to be updated continuously, and component discount factors for effective load effect separation. The effects of those improvements are evaluated regarding the root mean square errors, standard deviations, and 95% confidence intervals of the predictions. Bayes factors are used for evaluating the probability distributions of the predictions, which are essential to structural condition assessments, such as outlier identification and reliability analysis. The performance of the present BDLM has been successfully verified based on the simulated data and the real data obtained from the structural health monitoring system installed on the revolving structure.

Lifetime prediction of optocouplers in digital input and output modules based on bayesian tracking approaches

  • Shin, Insun;Kwon, Daeil
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.167-174
    • /
    • 2018
  • Digital input and output modules are widely used to connect digital sensors and actuators to automation systems. Digital I/O modules provide flexible connectivity extension to numerous sensors and actuators and protect systems from high voltages and currents by isolation. Components in digital I/O modules are inevitably affected by operating and environmental conditions, such as high voltage, high current, high temperature, and temperature cycling. Because digital I/O modules transfer signals or isolate the systems from unexpected voltage and current transients, their failures may result in signal transmission failures and damages to sensitive circuitry leading to system malfunction and system shutdown. In this study, the lifetime of optocouplers, one of the critical components in digital I/O modules, was predicted using Bayesian tracking approaches. Accelerated degradation tests were conducted for collecting the critical performance parameter of optocouplers, current transfer ratio (CTR), during their lifetime. Bayesian tracking approaches, including extended Kalman filter and particle filter, were applied to predict the failure. The performance of each prognostic algorithm was then compared using accuracy and robustness-based performance metrics.

Bayesian Prediction for Game-structured Slotted ALOHA (게임으로 만들어진 슬롯화된 ALOHA를 위한 Bayes 풍의 예측)

  • Choi, Cheon-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • With a game-theoretic view, p-persistence slotted ALOHA is structured as a non-cooperative game, in which a Nash equilibrium is sought to provide a value for the probability of attempting to deliver a packet. An expression of Nash equilibrium necessarily includes the number of active outer stations, which is hardly available in many practical applications. In this paper, we thus propose a Bayesian scheme of predicting the number of active outer stations prior to deciding whether to attempt to deliver a packet or not. Despite only requiring the minimal information that an outer station is genetically able to acquire by itself, the Bayesian scheme demonstrates the competitive predicting performance against a method which depends on heavy information.