• Title/Summary/Keyword: Bayesian MCMC(Markov Chain Monte Carlo)

Search Result 88, Processing Time 0.029 seconds

Multiple Comparisons for a Bivariate Exponential Populations Based On Dirichlet Process Priors

  • Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.553-560
    • /
    • 2007
  • In this paper, we consider two components system which lifetimes have Freund's bivariate exponential model with equal failure rates. We propose Bayesian multiple comparisons procedure for the failure rates of I Freund's bivariate exponential populations based on Dirichlet process priors(DPP). The family of DPP is applied in the form of baseline prior and likelihood combination to provide the comparisons. Computation of the posterior probabilities of all possible hypotheses are carried out through Markov Chain Monte Carlo(MCMC) method, namely, Gibbs sampling, due to the intractability of analytic evaluation. The whole process of multiple comparisons problem for the failure rates of bivariate exponential populations is illustrated through a numerical example.

  • PDF

Concept and Procedure of Hydrologic Frequency Analysis with Climate Information (기상정보를 고려한 수문빈도해석 개념 및 절차)

  • Moon, Young-Il;Kwon, Hyun-Han
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.727-730
    • /
    • 2008
  • 최근 연구에 의하면 기상 등의 외부적 요인이 수문학적 빈도를 변화시킨다고 알려지고 있다. 그러나 전통적인 수문학적 빈도해석은 자료의 정상성을 전제로 하기 때문에 어떤 외부인자의 따른 영향을 고려할 수 없다. 본 연구에서는 비정상성 빈도해석 모형의 기본 개념 및 절차에 대해서 살펴보았고 이를 국내 자료에 대해서 적용 검토하였다. 본 연구에서는 계층적 Bayesian 방법을 이용하여 한국에서 극치사상의 영향을 미치는 다양한 영향 인자를 평가하였다. 해수면온도, 예측 GCM 강수량 및 기상인자를 잠재적인 영향인자로 고려하였다. 수문위험도 분석에 관련된 매개변수는 Markov Chain Monte Carlo (MCMC) 방법을 이용하였다. 각 예측 인자의 적합성 및 중요성은 각 예측인자와 관련된 매개변수의 사후분포를 이용하여 검토 평가하였다.

  • PDF

Bayesian analysis of directional conditionally autoregressive models (방향성 공간적 조건부 자기회귀 모형의 베이즈 분석 방법)

  • Kyung, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1133-1146
    • /
    • 2016
  • Counts or averages over arbitrary regions are often analyzed using conditionally autoregressive (CAR) models. The spatial neighborhoods within CAR model are generally formed using only the inter-distance or boundaries between the sub-regions. Kyung and Ghosh (2009) proposed a new class of models to accommodate spatial variations that may depend on directions, using different weights given to neighbors in different directions. The proposed model, directional conditionally autoregressive (DCAR) model, generalized the usual CAR model by accounting for spatial anisotropy. Bayesian inference method is discussed based on efficient Markov chain Monte Carlo (MCMC) sampling of the posterior distributions of the parameters. The method is illustrated using a data set of median property prices across Greater Glasgow, Scotland, in 2008.

The Impact of Foreign Ownership on Capital Structure: Empirical Evidence from Listed Firms in Vietnam

  • NGUYEN, Van Diep;DUONG, Quynh Nga
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.2
    • /
    • pp.363-370
    • /
    • 2022
  • The study aims to probe the impact of foreign ownership on Vietnamese listed firms' capital structure. This study employs panel data of 288 non-financial firms listed on the Ho Chi Minh City stock exchange (HOSE) and Ha Noi stock exchange (HNX) in 2015-2019. In this research, we applied a Bayesian linear regression method to provide probabilistic explanations of the model uncertainty and effect of foreign ownership on the capital structure of non-financial listed enterprises in Vietnam. The findings of experimental analysis by Bayesian linear regression method through Markov chain Monte Carlo (MCMC) technique combined with Gibbs sampler suggest that foreign ownership has substantial adverse effects on the firms' capital structure. Our findings also indicate that a firm's size, age, and growth opportunities all have a strong positive and significant effect on its debt ratio. We found that the firms' profitability, tangible assets, and liquidity negatively and strongly affect firms' capital structure. Meanwhile, there is a low negative impact of dividends and inflation on the debt ratio. This research has ramifications for business managers since it improves a company's financial resources by developing a strong capital structure and considering foreign investment as a source of funding.

Bayesian Variable Selection in the Proportional Hazard Model with Application to Microarray Data

  • Lee, Kyeong-Eun;Mallick, Bani K.
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.17-23
    • /
    • 2005
  • In this paper we consider the well-known semiparametric proportional hazards models for survival analysis. These models are usually used with few covariates and many observations (subjects). But, for a typical setting of gene expression data from DNA microarray, we need to consider the case where the number of covariates p exceeds the number of samples n. For a given vector of response values which are times to event (death or censored times) and p gene expressions(covariates), we address the issue of how to reduce the dimension by selecting the significant genes. This approach enables us to estimate the survival curve when n ${\ll}$p. In our approach, rather than fixing the number of selected genes, we will assign a prior distribution to this number. The approach creates additional flexibility by allowing the imposition of constraints, such as bounding the dimension via a prior, which in effect works as a penalty To implement our methodology, we use a Markov Chain Monte Carlo (MCMC) method. We demonstrate the use of the methodology to diffuse large B-cell lymphoma (DLBCL) complementary DNA (cDNA) data and Breast Carcinomas data.

  • PDF

Shadow Economy, Corruption and Economic Growth: An Analysis of BRICS Countries

  • NGUYEN, Diep Van;DUONG, My Tien Ha
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.4
    • /
    • pp.665-672
    • /
    • 2021
  • The paper examines the impact of shadow economy and corruption, along with public expenditure, trade openness, foreign direct investment (FDI), inflation, and tax revenue on the economic growth of the BRICS countries. Data were collected from the World Bank, Transparency International, and Heritage Foundation over the 1991-2017 period. The Bayesian linear regression method is used to examine whether shadow economy, corruption and other indicators affect the economic growth of countries studied. This paper applies the normal prior suggested by Lemoine (2019) while the posterior distribution is simulated using Monte Carlo Markov Chain (MCMC) technique through the Gibbs sampling algorithm. The results indicate that public expenditure and trade openness can enhance the BRICS countries' economic growth, with the positive impact probability of 75.69% and 67.11%, respectively. Also, FDI, inflation, and tax revenue positively affect this growth, though the probability of positive effect is ambiguous, ranging from 51.13% to 56.36%. Further, the research's major finding is that shadow economy and control of corruption have a positive effect on the economic growth of the BRICS countries. Nevertheless, the posterior probabilities of these two factors are 62.23% and 65.25%, respectively. This result suggests that their positive effect probability is not high.

Kennicutt-Schmidt law with H I velocity profile decomposition in NGC 6822

  • Park, Hye-Jin;Oh, Se-Heon;Wang, Jing;Zheng, Yun;Zhang, Hong-Xin;de Blok, W.J.G.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.32.3-33
    • /
    • 2021
  • We present H I gas kinematics and star formation activities of NGC 6822, a dwarf galaxy located in the Local Volume at a distance of ~ 490 kpc. We perform profile decomposition of the line-of-sight velocity profiles of the high-resolution (42.4" × 12" spatial; 1.6 km/s spectral) H I data cube taken with the Australia Telescope Compact Array (ATCA). For this, we use a new tool, the so-called BAYGAUD (BAYesian GAUssian Decompositor) which is based on Bayesian Markov Chain Monte Carlo (MCMC) techniques, allowing us to decompose a line-of-sight velocity profile into an optimal number of Gaussian components in a quantitative manner. We classify the decomposed H I gas components of NGC 6822 into bulk-narrow, bulk-broad, and non_bulk with respect to their velocity and velocity dispersion. We correlate their gas surface densities with the surface star formation rates derived using both GALEX far-ultraviolet and WISE 22 micron data to examine the impact of gas turbulence caused by stellar feedback on the Kennicutt-Schmidt (K-S) law. The bulk-narrow component that resides within r25 is likely to follow the linear extension of the Kennicutt-Schmidt (K-S) law for molecular hydrogen (H2) at the low gas surface density regime where H I is not saturated.

  • PDF

Enhancing the radar-based mean areal precipitation forecasts to improve urban flood predictions and uncertainty quantification

  • Nguyen, Duc Hai;Kwon, Hyun-Han;Yoon, Seong-Sim;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.123-123
    • /
    • 2020
  • The present study is aimed to correcting radar-based mean areal precipitation forecasts to improve urban flood predictions and uncertainty analysis of water levels contributed at each stage in the process. For this reason, a long short-term memory (LSTM) network is used to reproduce three-hour mean areal precipitation (MAP) forecasts from the quantitative precipitation forecasts (QPFs) of the McGill Algorithm for Precipitation nowcasting by Lagrangian Extrapolation (MAPLE). The Gangnam urban catchment located in Seoul, South Korea, was selected as a case study for the purpose. A database was established based on 24 heavy rainfall events, 22 grid points from the MAPLE system and the observed MAP values estimated from five ground rain gauges of KMA Automatic Weather System. The corrected MAP forecasts were input into the developed coupled 1D/2D model to predict water levels and relevant inundation areas. The results indicate the viability of the proposed framework for generating three-hour MAP forecasts and urban flooding predictions. For the analysis uncertainty contributions of the source related to the process, the Bayesian Markov Chain Monte Carlo (MCMC) using delayed rejection and adaptive metropolis algorithm is applied. For this purpose, the uncertainty contributions of the stages such as QPE input, QPF MAP source LSTM-corrected source, and MAP input and the coupled model is discussed.

  • PDF

A Study on the Effects of Oil Shocks and Energy Efficient Consumption Structure with a Bayesian DSGE Model (베이지안 동태확률일반균형모형을 이용한 유가충격 및 에너지 소비구조 전환의 효과분석)

  • Cha, Kyungsoo
    • Environmental and Resource Economics Review
    • /
    • v.19 no.2
    • /
    • pp.215-242
    • /
    • 2010
  • This study constructs a bayesian neoclassical DSGE model that applies oil usage. The model includes technology shocks, oil price shocks, and shocks to energy policies as exogenous driving forces. First, this study aims to analyze the roles of these exogenous shocks in the Korean business cycle. Second, this study examines the effects of long-term changes in the energy consumption structure, including the reduction in oil use as a share of energy consumption and improvement in oil efficiency. In the case of oil price shocks, results show that these shocks exert recessionary pressure on the economy in line with those obtained in the previous literature. On the other hand, shocks to energy policies, which reduce oil consumption per capital, result in opposite consequences to oil price shocks, decreasing oil consumption. Also, counterfactual exercises show that long-term changes in the energy consumption structure would mitigate the contractionary effects of oil price shocks.

  • PDF

Rare Disaster Events, Growth Volatility, and Financial Liberalization: International Evidence

  • Bongseok Choi
    • Journal of Korea Trade
    • /
    • v.27 no.2
    • /
    • pp.96-114
    • /
    • 2023
  • Purpose - This paper elucidates a nexus between the occurrence of rare disaster events and the volatility of economic growth by distinguishing the likelihood of rare events from stochastic volatility. We provide new empirical facts based on a quarterly time series. In particular, we focus on the role of financial liberalization in spreading the economic crisis in developing countries. Design/methodology - We use quarterly data on consumption expenditure (real per capita consumption) from 44 countries, including advanced and developing countries, ending in the fourth quarter of 2020. We estimate the likelihood of rare event occurrences and stochastic volatility for countries using the Bayesian Markov chain Monte Carlo (MCMC) method developed by Barro and Jin (2021). We present our estimation results for the relationship between rare disaster events, stochastic volatility, and growth volatility. Findings - We find the global common disaster event, the COVID-19 pandemic, and thirteen country-specific disaster events. Consumption falls by about 7% on average in the first quarter of a disaster and by 4% in the long run. The occurrence of rare disaster events and the volatility of gross domestic product (GDP) growth are positively correlated (4.8%), whereas the rare events and GDP growth rate are negatively correlated (-12.1%). In particular, financial liberalization has played an important role in exacerbating the adverse impact of both rare disasters and financial market instability on growth volatility. Several case studies, including the case of South Korea, provide insights into the cause of major financial crises in small open developing countries, including the Asian currency crisis of 1998. Originality/value - This paper presents new empirical facts on the relationship between the occurrence of rare disaster events (or stochastic volatility) and growth volatility. Increasing data frequency allows for greater accuracy in assessing a country's specific risk. Our findings suggest that financial market and institutional stability can be vital for buffering against rare disaster shocks. It is necessary to preemptively strengthen the foundation for financial stability in developing countries and increase the quality of the information provided to markets.